Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell75, 843–854 (1993). CASPubMed Google Scholar
Wightman, B., Ha, I. & Ruvkun, G. Post-transcriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell75, 855–862 (1993). CASPubMed Google Scholar
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell144, 646–674 (2011). CASPubMed Google Scholar
Calin, G. A. et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA99, 15524–15529 (2002). This article reports miRNA deregulation in cancer and is the first evidence of the role of miRNAs in cancer. ADSCASPubMedPubMed Central Google Scholar
Lu, J. et al. MicroRNA expression profiles classify human cancers. Nature435, 834–838 (2005). This article systematically profiles miRNAs in cancer and demonstrates their potential as classifiers. ADSCASPubMed Google Scholar
O'Donnell, K. A., Wentzel, E. A., Zeller, K. I., Dang, C. V. & Mendell, J. T. c-Myc-regulated microRNAs modulate E2F1 expression. Nature435, 839–843 (2005). ADSCASPubMed Google Scholar
He, L. et al. A microRNA polycistron as a potential human oncogene. Nature435, 828–833 (2005). References 7 and 8 show, for the first time, that miRNAs can be actively involved in the MYC signalling pathway. ADSCASPubMedPubMed Central Google Scholar
Calin, G. A. et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl Acad. Sci. USA101, 2999–3004 (2004). ADSCASPubMedPubMed Central Google Scholar
Saito, Y. et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell9, 435–443 (2006). CASPubMed Google Scholar
Mayr, C., Hemann, M. T. & Bartel, D. P. Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science315, 1576–1579 (2007). ADSCASPubMedPubMed Central Google Scholar
Veronese, A. et al. Mutated β-catenin evades a microRNA-dependent regulatory loop. Proc. Natl Acad. Sci. USA108, 4840–4845 (2011). ADSCASPubMedPubMed Central Google Scholar
Diederichs, S. & Haber, D. A. Sequence variations of microRNAs in human cancer: alterations in predicted secondary structure do not affect processing. Cancer Res.66, 6097–6104 (2006). CASPubMed Google Scholar
Kuchenbauer, F. et al. In-depth characterization of the microRNA transcriptome in a leukemia progression model. Genome Res.18, 1787–1797 (2008). CASPubMedPubMed Central Google Scholar
Yanaihara, N. et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell9, 189–198 (2006). CASPubMed Google Scholar
Calin, G. A. et al. A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N. Engl. J. Med.353, 1793–1801 (2005). CASPubMed Google Scholar
Rosenfeld, N. et al. MicroRNAs accurately identify cancer tissue origin. Nature Biotechnol.26, 462–469 (2008). CAS Google Scholar
Xi, Y. et al. Systematic analysis of microRNA expression of RNA extracted from fresh frozen and formalin-fixed paraffin-embedded samples. RNA13, 1668–1674 (2007). CASPubMedPubMed Central Google Scholar
Mitchell, P. S. et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl Acad. Sci. USA105, 10513–10518 (2008). ADSCASPubMedPubMed Central Google Scholar
Chang, T. C. et al. Widespread microRNA repression by Myc contributes to tumorigenesis. Nature Genet.40, 43–50 (2008). CASPubMed Google Scholar
Thomson, J. M. et al. Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev.20, 2202–2207 (2006). CASPubMedPubMed Central Google Scholar
Kumar, M. S., Lu, J., Mercer, K. L., Golub, T. R. & Jacks, T. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nature Genet.39, 673–677 (2007). CASPubMed Google Scholar
Merritt, W. M. et al. Dicer, Drosha, and outcomes in patients with ovarian cancer. N. Engl. J. Med.359, 2641–2650 (2008). CASPubMedPubMed Central Google Scholar
Melo, S. A. et al. A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nature Genet.41, 365–370 (2009). CASPubMed Google Scholar
Melo, S. A. et al. A genetic defect in exportin-5 traps precursor microRNAs in the nucleus of cancer cells. Cancer Cell18, 303–315 (2010). CASPubMed Google Scholar
Newman, M. A. & Hammond, S. M. Emerging paradigms of regulated microRNA processing. Genes Dev.24, 1086–1092 (2010). CASPubMedPubMed Central Google Scholar
Mavrakis, K. J. et al. Genome-wide RNA-mediated interference screen identifies miR-19 targets in Notch-induced T-cell acute lymphoblastic leukaemia. Nature Cell Biol.12, 372–379 (2010). CASPubMed Google Scholar
Portela, A. & Esteller, M. Epigenetic modifications and human disease. Nature Biotechnol.28, 1057–1068 (2010). CAS Google Scholar
Cao, Q. et al. Coordinated regulation of Polycomb Group complexes through microRNAs in cancer. Cancer Cell20, 187–199 (2011). CASPubMedPubMed Central Google Scholar
Fabbri, M. et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc. Natl Acad. Sci. USA104, 15805–15810 (2007). ADSCASPubMedPubMed Central Google Scholar
Varambally, S. et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science322, 1695–1699 (2008). ADSCASPubMedPubMed Central Google Scholar
Hwang, H. W., Wentzel, E. A. & Mendell, J. T. A hexanucleotide element directs microRNA nuclear import. Science315, 97–100 (2007). ADSCASPubMed Google Scholar
Khraiwesh, B. et al. Transcriptional control of gene expression by microRNAs. Cell140, 111–122 (2010). CASPubMed Google Scholar
Gebeshuber, C. A., Zatloukal, K. & Martinez, J. miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Rep.10, 400–405 (2009). CASPubMedPubMed Central Google Scholar
Dews, M. et al. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nature Genet.38, 1060–1065 (2006). CASPubMed Google Scholar
Cairo, S. et al. Stem cell-like micro-RNA signature driven by Myc in aggressive liver cancer. Proc. Natl Acad. Sci. USA107, 20471–20476 (2010). ADSCASPubMedPubMed Central Google Scholar
Kent, O. A. et al. Repression of the miR-143/145 cluster by oncogenic Ras initiates a tumor-promoting feed-forward pathway. Genes Dev.24, 2754–2759 (2010). CASPubMedPubMed Central Google Scholar
Johnson, S. M. et al. RAS is regulated by the let-7 microRNA family. Cell120, 635–647 (2005). This article reports the first evidence of an oncogene, KRAS, being targeted by an miRNA. CASPubMed Google Scholar
He, L., He, X., Lowe, S. W. & Hannon, G. J. microRNAs join the p53 network–another piece in the tumour-suppression puzzle. Nature Rev. Cancer7, 819–822 (2007). This comprehensive review describes the regulation of the miR-34 family by the tumour suppressor p53. CAS Google Scholar
Pichiorri, F. et al. Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development. Cancer Cell18, 367–381 (2010). CASPubMedPubMed Central Google Scholar
Xiao, J., Lin, H., Luo, X. & Wang, Z. miR-605 joins p53 network to form a p53:miR-605:Mdm2 positive feedback loop in response to stress. EMBO J.30, 524–532 (2011). CASPubMedPubMed Central Google Scholar
Yamakuchi, M. et al. P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. Proc. Natl Acad. Sci. USA107, 6334–6339 (2010). ADSCASPubMedPubMed Central Google Scholar
Chang, C. J. et al. p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nature Cell Biol.13, 317–323 (2011). CASPubMed Google Scholar
Kim, T. et al. p53 regulates epithelial-mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. J. Exp. Med.208, 875–883 (2011). ADSCASPubMedPubMed Central Google Scholar
Swarbrick, A. et al. miR-380-5p represses p53 to control cellular survival and is associated with poor outcome in _MYCN_-amplified neuroblastoma. Nature Med.16, 1134–1140 (2010). CASPubMed Google Scholar
Ma, L., Teruya-Feldstein, J. & Weinberg, R. A. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature449, 682–688 (2007). This study demonstrates for the first time that miRNAs are involved in tumour invasion and metastasis. ADSCASPubMed Google Scholar
Ma, L. et al. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nature Cell Biol.12, 247–256 (2010). CASPubMed Google Scholar
Valastyan, S. et al. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell137, 1032–1046 (2009). CASPubMedPubMed Central Google Scholar
Cano, A. & Nieto, M. A. Non-coding RNAs take centre stage in epithelial-to-mesenchymal transition. Trends Cell Biol.18, 357–359 (2008). CASPubMed Google Scholar
Korpal, M. et al. Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nature Med.17, 1101–1108 (2011). CASPubMed Google Scholar
Martello, G. et al. A microRNA targeting Dicer for metastasis control. Cell141, 1195–1207 (2010). CASPubMed Google Scholar
Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science324, 1029–1033 (2009). ADSCASPubMedPubMed Central Google Scholar
Godlewski, J. et al. MicroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells. Mol. Cell37, 620–632 (2010). CASPubMedPubMed Central Google Scholar
Gao, P. et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature458, 762–765 (2009). ADSCASPubMedPubMed Central Google Scholar
Anand, S. et al. MicroRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis. Nature Med.16, 909–914 (2010). CASPubMed Google Scholar
Mu, P. et al. Genetic dissection of the miR-17∼92 cluster of microRNAs in Myc-induced B-cell lymphomas. Genes Dev.23, 2806–2811 (2009). CASPubMedPubMed Central Google Scholar
Costinean, S. et al. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc. Natl Acad. Sci. USA103, 7024–7029 (2006). This article reports overexpression of a single miRNA can cause cancerin vivo. ADSCASPubMedPubMed Central Google Scholar
O'Connell, R. M. et al. Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J. Exp. Med.205, 585–594 (2008). CASPubMedPubMed Central Google Scholar
Miska, E. A. et al. Most Caenorhabditis elegans microRNAs are individually not essential for development or viability. PLoS Genet.3, e215 (2007). PubMedPubMed Central Google Scholar
Klein, U. et al. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell17, 28–40 (2010). CASPubMed Google Scholar
Medina, P. P., Nolde, M. & Slack, F. J. OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature467, 86–90 (2010). ADSCASPubMed Google Scholar
Chan, J. A., Krichevsky, A. M. & Kosik, K. S. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res.65, 6029–6033 (2005). CASPubMed Google Scholar
Prosser, H. M., Koike-Yusa, H., Cooper, J. D., Law, F. C. & Bradley, A. A resource of vectors and ES cells for targeted deletion of microRNAs in mice. Nature Biotechnol.29, 840–845 (2011). CAS Google Scholar
Loya, C. M., Lu, C. S., Van Vactor, D. & Fulga, T. A. Transgenic microRNA inhibition with spatiotemporal specificity in intact organisms. Nature Methods6, 897–903 (2009). CASPubMedPubMed Central Google Scholar
Zhu, Q. et al. A sponge transgenic mouse model reveals important roles for the miRNA-183/96/182 cluster in post-mitotic photoreceptors of the retina. J. Biol. Chem.2865, 31749–31760 (2011). This article reports the development of the first sponge transgenic mouse that allowsin vivoinhibition of one or several miRNAs. Google Scholar
Kota, J. et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell137, 1005–1017 (2009). This article uses adenovirus-associated vectors to deliver miRNAs to the liver and treat cancer. CASPubMedPubMed Central Google Scholar
Czech, B. & Hannon, G. J. Small RNA sorting: matchmaking for Argonautes. Nature Rev. Genet.12, 19–31 (2011). CASPubMed Google Scholar
Chicas, A. et al. Dissecting the unique role of the retinoblastoma tumor suppressor during cellular senescence. Cancer Cell17, 376–387 (2010). CASPubMedPubMed Central Google Scholar
Stegmeier, F., Hu, G., Rickles, R. J., Hannon, G. J. & Elledge, S. J. A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proc. Natl Acad. Sci. USA102, 13212–13217 (2005). ADSCASPubMedPubMed Central Google Scholar
Zuber, J. et al. Toolkit for evaluating genes required for proliferation and survival using tetracycline-regulated RNAi. Nature Biotechnol.29, 79–83 (2010). Google Scholar
Fellmann, C. et al. Functional identification of optimized RNAi triggers using a massively parallel sensor assay. Mol. Cell41, 733–746 (2011). CASPubMedPubMed Central Google Scholar
Premsrirut, P. K. et al. A rapid and scalable system for studying gene function in mice using conditional RNA interference. Cell145, 145–158 (2011). CASPubMedPubMed Central Google Scholar
Seibler, J. et al. Reversible gene knockdown in mice using a tight, inducible shRNA expression system. Nucleic. Acids Res.35, e54 (2007). PubMedPubMed Central Google Scholar
Hemann, M. T. et al. An epi-allelic series of p53 hypomorphs created by stable RNAi produces distinct tumor phenotypes in vivo. Nature Genet.33, 396–400 (2003). CASPubMed Google Scholar
Zender, L. et al. An oncogenomics-based in vivo RNAi screen identifies tumor suppressors in liver cancer. Cell135, 852–864 (2008). CASPubMedPubMed Central Google Scholar
Westbrook, T. F. et al. A genetic screen for candidate tumor suppressors identifies REST. Cell121, 837–848 (2005). CASPubMed Google Scholar
Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature445, 656–660 (2007). CASPubMedPubMed Central Google Scholar
Luo, J. et al. A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell137, 835–848 (2009). CASPubMedPubMed Central Google Scholar
Scholl, C. et al. Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell137, 821–834 (2009). CASPubMed Google Scholar
Barbie, D. A. et al. Systematic RNA interference reveals that oncogenic _KRAS_-driven cancers require TBK1. Nature462, 108–112 (2009). ADSCASPubMedPubMed Central Google Scholar
Zuber, J. et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature478, 524–528 (2011). ADSCASPubMedPubMed Central Google Scholar
Gumireddy, K. et al. Small-molecule inhibitors of microRNA miR-21 function. Angew. Chem. Int. Ed. Engl.47, 7482–7484 (2008). CASPubMedPubMed Central Google Scholar
Melo, S. et al. Small molecule enoxacin is a cancer-specific growth inhibitor that acts by enhancing TAR RNA-binding protein 2-mediated microRNA processing. Proc. Natl. Acad. Sci. USA108, 4394–4399 (2011). ADSCASPubMedPubMed Central Google Scholar
Garzon, R., Marcucci, G. & Croce, C. M. Targeting microRNAs in cancer: rationale, strategies and challenges. Nature Rev. Drug Discov.9, 775–789 (2010). CAS Google Scholar
Lanford, R. E. et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science327, 198–201 (2009). ADSPubMedPubMed Central Google Scholar
Obad, S. et al. Silencing of microRNA families by seed-targeting tiny LNAs. Nature Genet.43, 371–378 (2011). CASPubMed Google Scholar
Bonci, D. et al. The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nature Med.14, 1271–1277 (2008). CASPubMed Google Scholar
Kumar, M. S. et al. Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc. Natl Acad. Sci. USA105, 3903–3908 (2008). ADSCASPubMedPubMed Central Google Scholar
Poliseno, L. et al. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature465, 1033–1038 (2010). This elegant study shows how mRNA from genes and pseudogenes can compete for the binding of miRNAs, unveiling the complexity of miRNA regulatory networks. ADSCASPubMedPubMed Central Google Scholar
Ruby, J. G., Jan, C. H. & Bartel, D. P. Intronic microRNA precursors that bypass Drosha processing. Nature448, 83–86 (2007). ADSCASPubMedPubMed Central Google Scholar
Cheloufi, S., Dos Santos, C. O., Chong, M. M. & Hannon, G. J. A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature465, 584–589 (2010). ADSCASPubMedPubMed Central Google Scholar