Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases (original) (raw)
Deng, H.K. et al. Identification of a major co-receptor for primary isolates of HIV-1. Nature381, 661–666 (1996). ArticleCAS Google Scholar
Alkhatib, G. et al. Cc Ckrs: A Rantes, Mip-1 Alpha, Mip-1 Beta Receptor As A Fusion Cofactor for Macrophage-Tropic HIV-1. Science272, 1955–1958 (1996). ArticleCAS Google Scholar
Liu, R. et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell86, 367–377 (1996). ArticleCAS Google Scholar
Samson, M. et al. Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature382, 722–725 (1996). ArticleCAS Google Scholar
Huang, Y.X. et al. The role of a mutant CCR5 allele in HIV-1 transmission and disease progression. Nat. Med.2, 1240–1243 (1996). ArticleCAS Google Scholar
Lederman, M.M. et al. Prevention of vaginal SHIV transmission in rhesus macaques through inhibition of CCR5. Science306, 485–487 (2004). ArticleCAS Google Scholar
Mosier, D.E. et al. Highly potent RANTES analogues either prevent CCR5-using human immunodeficiency virus type 1 infection in vivo or rapidly select for CXCR4-using variants. J. Virol.73, 3544–3550 (1999). CASPubMedPubMed Central Google Scholar
Fatkenheuer, G. et al. Efficacy of short-term monotherapy with maraviroc, a new CCR5 antagonist, in patients infected with HIV-1. Nat. Med.11, 1170–1172 (2005). Article Google Scholar
Kuhmann, S.E. et al. Genetic and phenotypic analyses of human immunodeficiency virus type 1 escape from a small-molecule CCR5 inhibitor. J. Virol.78, 2790–2807 (2004). ArticleCAS Google Scholar
Abad, J.L. et al. Novel interfering bifunctional molecules against the CCR5 coreceptor are efficient inhibitors of HIV-1 infection. Mol. Ther.8, 475–484 (2003). ArticleCAS Google Scholar
Bai, J.R. et al. Characterization of anti-CCR5 ribozyme-transduced CD34(+) hematopoietic progenitor cells in vitro and in a SCID-hu mouse model in vivo. Mol. Ther.1, 244–254 (2000). ArticleCAS Google Scholar
Barassi, C. et al. Induction of murine mucosal CCR5-reactive antibodies as an anti-human immunodeficiency virus strategy. J. Virol.79, 6848–6858 (2005). ArticleCAS Google Scholar
Levine, B.L. et al. Adoptive transfer of costimulated CD4(+) T cells induces expansion of peripheral T cells and decreased CCR5 expression in HIV infection. Nat. Med.8, 47–53 (2002). ArticleCAS Google Scholar
Qin, X.F., An, D.S., Chen, I.S.Y. & Baltimore, D. Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc. Natl. Acad. Sci. USA100, 183–188 (2003). ArticleCAS Google Scholar
Steinberger, P., Andris-Widhopf, J., Buhler, B., Torbett, B.E. & Barbas, C.F. Functional deletion of the CCR5 receptor by intracellular immunization produces cells that are refractory to CCR5-dependent HIV-1 infection and cell fusion. Proc. Natl. Acad. Sci. USA97, 805–810 (2000). ArticleCAS Google Scholar
Urnov, F.D. et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature435, 646–651 (2005). ArticleCAS Google Scholar
Moore, M., Choo, Y. & Klug, A. Design of polyzinc finger peptides with structured linkers. Proc. Natl. Acad. Sci. USA98, 1432–1436 (2001). ArticleCAS Google Scholar
Jamieson, A.C., Miller, J.C. & Pabo, C.O. Drug discovery with engineered zinc-finger proteins. Nat. Rev. Drug Discov.2, 361–368 (2003). ArticleCAS Google Scholar
Smith, J. et al. Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Res.28, 3361–3369 (2000). ArticleCAS Google Scholar
Bibikova, M., Golic, M., Golic, K.G. & Carroll, D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics161, 1169–1175 (2002). CASPubMedPubMed Central Google Scholar
Lloyd, A., Plaisier, C.L., Carroll, D. & Drews, G.N. Targeted mutagenesis using zinc-finger nucleases in Arabidopsis . Proc. Natl. Acad. Sci. USA102, 2232–2237 (2005). ArticleCAS Google Scholar
Jasin, M. Genetic manipulation of genomes with rare-cutting endonucleases. Trends Genet.12, 224–228 (1996). ArticleCAS Google Scholar
Valerie, K. & Povirk, L.F. Regulation and mechanisms of mammalian double-strand break repair. Oncogene22, 5792–5812 (2003). ArticleCAS Google Scholar
Morner, A. et al. Primary human immunodeficiency virus type 2 (HIV-2) isolates, like HIV-1 isolates, frequently use CCR5 but show promiscuity in coreceptor usage. J. Virol.73, 2343–2349 (1999). CASPubMedPubMed Central Google Scholar
Schroers, R. et al. Gene transfer into human T lymphocytes and natural killer cells by Ad5/F35 chimeric adenoviral vectors. Exp. Hematol.32, 536–546 (2004). ArticleCAS Google Scholar
Hung, C.S., Vander Heyden, N. & Ratner, L. Analysis of the critical domain in the V3 loop of human immunodeficiency virus type 1 gp120 involved in CCR5 utilization. J. Virol.73, 8216–8226 (1999). CASPubMedPubMed Central Google Scholar
Bibikova, M. et al. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol. Cell. Biol.21, 289–297 (2001). ArticleCAS Google Scholar
Bitinaite, J., Wah, D.A., Aggarwal, A.K. & Schildkraut, I. _Fok_I dimerization is required for DNA cleavage. Proc. Natl. Acad. Sci. USA95, 10570–10575 (1998). ArticleCAS Google Scholar
Schultz, L.B., Chehab, N.H., Malikzay, A. & Halazonetis, T.D. p53 Binding protein 1 (53BP1) is an early participant in the cellular response to DNA double-strand breaks. J. Cell Biol.151, 1381–1390 (2000). ArticleCAS Google Scholar
Thiriet, C. & Hayes, J.J. Chromatin in need of a fix: Phosphorylation of H2AX connects chromatin to DNA repair. Mol. Cell18, 617–622 (2005). ArticleCAS Google Scholar
Tsukuda, T., Fleming, A.B., Nickoloff, J.A. & Osley, M.A. Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae . Nature438, 379–383 (2005). ArticleCAS Google Scholar
Peters, W., Dupuis, M. & Charo, I.F. A mechanism for the impaired IFN-gamma production in C–C chemokine receptor 2 (CCR2) knockout mice: Role of CCR2 in linking the innate and adaptive immune responses. J. Immunol.165, 7072–7077 (2000). ArticleCAS Google Scholar
Smith, M.W. et al. CCR2 chemokine receptor and AIDS progression. Nat. Med.3, 1052–1053 (1997). ArticleCAS Google Scholar
Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature437, 376–380 (2005). ArticleCAS Google Scholar
Watanabe, S. et al. Hematopoietic stem cell-engrafted NOD/SCID/IL2Rgamma null mice develop human lymphoid systems and induce long-lasting HIV-1 infection with specific humoral immune responses. Blood109, 212–218 (2007). ArticleCAS Google Scholar
An, D.S. et al. Stable reduction of CCR5 by RNAi through hematopoietic stem cell transplant in non-human primates. Proc. Natl. Acad. Sci. USA104, 13110–13115 (2007). ArticleCAS Google Scholar
Trkola, A. et al. HIV-1 escape from a small molecule, CCR5-specific entry inhibitor does not involve CXCR4 use. Proc. Natl. Acad. Sci. USA99, 395–400 (2002). ArticleCAS Google Scholar
Rossi, J.J., June, C.H. & Kohn, D.B. Genetic therapies against HIV. Nat. Biotechnol.25, 1444–1454 (2007). ArticleCAS Google Scholar
Levine, B.L. et al. Gene transfer in humans using a conditionally replicating lentiviral vector. Proc. Natl. Acad. Sci. USA103, 17372–17377 (2006). ArticleCAS Google Scholar
Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature401, 708–712 (1999). ArticleCAS Google Scholar
Zhang, Y., Joe, G., Hexner, E., Zhu, J. & Emerson, S.G. Host-reactive CD8(+) memory stem cells in graft-versus-host disease. Nat. Med.11, 1299–1305 (2005). ArticleCAS Google Scholar
Lombardo, A. et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat. Biotechnol.25, 1298–1306 (2007). ArticleCAS Google Scholar
Isalan, M., Klug, A. & Choo, Y. A rapid, generally applicable method to engineer zinc fingers illustrated by targeting the HIV-1 promoter. Nat. Biotechnol.19, 656–660 (2001). ArticleCAS Google Scholar
Isalan, M. & Choo, Y. Rapid, high-throughput engineering of sequence-specific zinc finger DNA-binding proteins. Methods Enzymol.340, 593–609 (2001). ArticleCAS Google Scholar
Bibikova, M., Beumer, K., Trautman, J.K. & Carroll, D. Enhancing gene targeting with designed zinc finger nucleases. Science300, 764 (2003). ArticleCAS Google Scholar
Porteus, M.H. & Baltimore, D. Chimeric nucleases stimulate gene targeting in human cells. Science300, 763 (2003). Article Google Scholar
Smith, J., Berg, J.M. & Chandrasegaran, S. A detailed study of the substrate specificity of a chimeric restriction enzyme. Nucleic Acids Res.27, 674–681 (1999). ArticleCAS Google Scholar
Miller, J.C. et al. An improved zinc-finger nuclease architecture for highly specific genome editing. Nat. Biotechnol.25, 778–785 (2007). ArticleCAS Google Scholar
Nilsson, M. et al. Development of an adenoviral vector system with adenovirus serotype 35 tropism; efficient transient gene transfer into primary malignant hematopoietic cells. J. Gene Med.6, 631–641 (2004). ArticleCAS Google Scholar
Lusso, P. et al. Growth of macrophage-tropic and primary human-immunodeficiency virus type 1 (HIV-1) isolates in a unique CD4+ T-cell clone (PM1): failure to downregulate CD4 and to interfere with cell-line-tropic HIV-1. J. Virol.69, 3712–3720 (1995). CASPubMedPubMed Central Google Scholar
Morner, A. et al. Primary human immunodeficiency virus type 2 (HIV-2) isolates, like HIV-1 isolates, frequently use CCR5 but show promiscuity in coreceptor usage. J. Virol.73, 2343–2349 (1999). CASPubMedPubMed Central Google Scholar