Autophagosome formation: core machinery and adaptations (original) (raw)
References
Klionsky, D. J. The molecular machinery of autophagy: unanswered questions. J. Cell Sci.118, 7–18 (2005). ArticleCASPubMed Google Scholar
Yorimitsu, T. & Klionsky, D. J. Autophagy: molecular machinery for self-eating. Cell Death Differ.12, 1542–1552 (2005). CASPubMed Google Scholar
Kunz, J. B., Schwarz, H. & Mayer, A. Determination of four sequential stages during microautophagy in vitro. J. Biol. Chem.279, 9987–9996 (2004). CASPubMed Google Scholar
Majeski, A. E. & Dice, J. F. Mechanisms of chaperone-mediated autophagy. Int. J. Biochem. Cell Biol.36, 2435–2444 (2004). CASPubMed Google Scholar
Kvam, E. & Goldfarb, D. S. Nucleus-vacuole junctions and piecemeal microautophagy of the nucleus in S. cerevisiae. Autophagy3, 85–92 (2007). CASPubMed Google Scholar
Levine, B. & Klionsky, D. J. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell6, 463–477 (2004). CASPubMed Google Scholar
Münz, C. Autophagy and antigen presentation. Cell. Micro.8, 891–898 (2006). Google Scholar
Shintani, T. & Klionsky, D. J. Autophagy in health and disease: a double-edged sword. Science306, 990–995 (2004). CASPubMedPubMed Central Google Scholar
Klionsky, D. J. et al. A unified nomenclature for yeast autophagy-related genes. Dev. Cell5, 539–545 (2003). CASPubMed Google Scholar
Kim, J., Huang, W.-P., Stromhaug, P. E. & Klionsky, D. J. Convergence of multiple autophagy and cytoplasm to vacuole targeting components to a perivacuolar membrane compartment prior to de novo vesicle formation. J. Biol. Chem.277, 763–773 (2002). CASPubMed Google Scholar
Suzuki, K. et al. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J.20, 5971–5981 (2001). CASPubMedPubMed Central Google Scholar
Mizushima, N. et al. Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. J. Cell Sci.116, 1679–1688 (2003). CASPubMed Google Scholar
Mizushima, N. et al. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J. Cell Biol.152, 657–668 (2001). CASPubMedPubMed Central Google Scholar
Yamada, T. et al. Endothelial nitric-oxide synthase antisense (NOS3AS) gene encodes an autophagy-related protein (APG9-like2) highly expressed in trophoblast. J. Biol. Chem.280, 18283–18290 (2005). CASPubMed Google Scholar
Young, A. R. J. et al. Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J. Cell. Sci.119, 3888–3900 (2006). CASPubMed Google Scholar
Kirisako, T. et al. Formation process of autophagosome is traced with Apg8/Aut7p in yeast. J. Cell Biol.147, 435–446 (1999). CASPubMedPubMed Central Google Scholar
Noda, T. et al. Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways. J. Cell Biol.148, 465–480 (2000). CASPubMedPubMed Central Google Scholar
He, C. et al. Recruitment of Atg9 to the preautophagosomal structure by Atg11 is essential for selective autophagy in budding yeast. J. Cell Biol.175, 925–935 (2006). CASPubMedPubMed Central Google Scholar
Reggiori, F., Shintani, T., Nair, U. & Klionsky, D. J. Atg9 cycles between mitochondria and the pre-autophagosomal structure in yeasts. Autophagy1, 101–109 (2005). ArticleCASPubMed Google Scholar
Reggiori, F., Tucker, K. A., Stromhaug, P. E. & Klionsky, D. J. The Atg1–Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. Dev. Cell6, 79–90 (2004). CASPubMed Google Scholar
Reggiori, F. & Klionsky, D. J. Atg9 sorting from mitochondria is impaired in early secretion and VFT-complex mutants in Saccharomyces cerevisiae. J. Cell Sci.119, 2903–2911 (2006). CASPubMed Google Scholar
Yen, W.-L., Legakis, J. E., Nair, U. & Klionsky, D. J. Atg27 is required for autophagy-dependent cycling of Atg9. Mol. Biol. Cell18, 581–593 (2006). PubMed Google Scholar
Legakis, J. E., Yen, W.-L. & Klionsky, D. J. A cycling protein complex required for selective autophagy. Autophagy3, 422–432 (2007). CASPubMed Google Scholar
Tucker, K. A., Reggiori, F., Dunn, W. A., Jr & Klionsky, D. J. Atg23 is essential for the cytoplasm to vacuole targeting pathway and efficient autophagy but not pexophagy. J. Biol. Chem.278, 48445–48452 (2003). CASPubMed Google Scholar
Kamada, Y. et al. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J. Cell Biol.150, 1507–1513 (2000). CASPubMedPubMed Central Google Scholar
Matsuura, A., Tsukada, M., Wada, Y. & Ohsumi, Y. Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene192, 245–250 (1997). CASPubMed Google Scholar
Kabeya, Y. et al. Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy. Mol. Biol. Cell16, 2544–2553 (2005). CASPubMedPubMed Central Google Scholar
Nair, U. & Klionsky, D. J. Molecular mechanisms and regulation of specific and nonspecific autophagy pathways in yeast. J. Biol. Chem.280, 41785–41788 (2005). CASPubMed Google Scholar
Kim, J. et al. Cvt9/Gsa9 functions in sequestering selective cytosolic cargo destined for the vacuole. J. Cell Biol.153, 381–396 (2001). CASPubMedPubMed Central Google Scholar
Meijer, W. H., van der Klei, I. J., Veenhuis, M. & Kiel, J. A. K. W. ATG genes involved in non-selective autophagy are conserved from yeast to man, but the selective Cvt and pexophagy pathways also require organism-specific genes. Autophagy3, 106–116 (2007). CASPubMed Google Scholar
Guan, J. et al. Cvt18/Gsa12 is required for cytoplasm-to-vacuole transport, pexophagy, and autophagy in Saccharomyces cerevisiae and Pichia pastoris. Mol. Biol. Cell12, 3821–3838 (2001). CASPubMedPubMed Central Google Scholar
Shintani, T., Suzuki, K., Kamada, Y., Noda, T. & Ohsumi, Y. Apg2p functions in autophagosome formation on the perivacuolar structure. J. Biol. Chem.276, 30452–30460 (2001). CASPubMed Google Scholar
Suzuki, K., Kubota, Y., Sekito, T. & Ohsumi, Y. Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells12, 209–218 (2007). CASPubMed Google Scholar
Wang, C.-W. et al. Apg2 is a novel protein required for the cytoplasm to vacuole targeting, autophagy, and pexophagy pathways. J. Biol. Chem.276, 30442–30451 (2001). CASPubMed Google Scholar
Stromhaug, P. E., Reggiori, F., Guan, J., Wang, C.-W. & Klionsky, D. J. Atg21 is a phosphoinositide binding protein required for efficient lipidation and localization of Atg8 during uptake of aminopeptidase I by selective autophagy. Mol. Biol. Cell15, 3553–3566 (2004). CASPubMedPubMed Central Google Scholar
Dove, S. K. et al. Svp1p defines a family of phosphatidylinositol 3,5-bisphosphate effectors. EMBO J.23, 1922–1933 (2004). CASPubMedPubMed Central Google Scholar
Proikas-Cezanne, T. et al. WIPI-1a (WIPI49), a member of the novel 7-bladed WIPI protein family, is aberrantly expressed in human cancer and is linked to starvation-induced autophagy. Oncogene23, 9314–9325 (2004). CASPubMed Google Scholar
Lindmo, K. & Stenmark, H. Regulation of membrane traffic by phosphoinositide 3-kinases. J. Cell Sci.119, 605–614 (2006). CASPubMed Google Scholar
Panaretou, C., Domin, J., Cockcroft, S. & Waterfield, M. D. Characterization of p150, an adaptor protein for the human phosphatidylinositol (PtdIns) 3-kinase. Substrate presentation by phosphatidylinositol transfer protein to the p150·Ptdins 3-kinase complex. J. Biol. Chem.272, 2477–2485 (1997). CASPubMed Google Scholar
Stack, J. H., Herman, P. K., Schu, P. V. & Emr, S. D. A membrane-associated complex containing the Vps15 protein kinase and the Vps34 PI 3-kinase is essential for protein sorting to the yeast lysosome-like vacuole. EMBO J.12, 2195–2204 (1993). CASPubMedPubMed Central Google Scholar
Kihara, A., Noda, T., Ishihara, N. & Ohsumi, Y. Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J. Cell Biol.152, 519–530 (2001). CASPubMedPubMed Central Google Scholar
Obara, K., Sekito, T. & Ohsumi, Y. Assortment of phosphatidylinositol 3-kinase complexes–Atg14p directs association of complex I to the pre-autophagosomal structure in Saccharomyces cerevisiae. Mol. Biol. Cell17, 1527–1539 (2006). CASPubMedPubMed Central Google Scholar
Liang, X. H. et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature402, 672–676 (1999). CASPubMed Google Scholar
Furuya, N., Yu, J., Byfield, M., Pattingre, S. & Levine, B. The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy and tumor suppressor function. Autophagy1, 46–52 (2005). CASPubMed Google Scholar
Zeng, X., Overmeyer, J. H. & Maltese, W. A. Functional specificity of the mammalian Beclin-Vps34 PI 3-kinase complex in macroautophagy versus endocytosis and lysosomal enzyme trafficking. J. Cell Sci.119, 259–270 (2006). CASPubMed Google Scholar
Ichimura, Y. et al. A ubiquitin-like system mediates protein lipidation. Nature408, 488–492 (2000). CASPubMed Google Scholar
Mizushima, N. et al. A protein conjugation system essential for autophagy. Nature395, 395–398 (1998). CASPubMed Google Scholar
Paz, Y., Elazar, Z. & Fass, D. Structure of GATE-16, membrane transport modulator and mammalian ortholog of autophagocytosis factor Aut7p. J. Biol. Chem.275, 25445–25450 (2000). CASPubMed Google Scholar
Suzuki, N. N., Yoshimoto, K., Fujioka, Y., Ohsumi, Y. & Inagaki, F. The crystal structure of plant ATG12 and its biological implication in autophagy. Autophagy1, 119–126 (2005). CASPubMed Google Scholar
George, M. D. et al. Apg5p functions in the sequestration step in the cytoplasm-to-vacuole targeting and macroautophagy pathways. Mol. Biol. Cell11, 969–982 (2000). CASPubMedPubMed Central Google Scholar
Mizushima, N., Sugita, H., Yoshimori, T. & Ohsumi, Y. A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy. J. Biol. Chem.273, 33889–33892 (1998). CASPubMed Google Scholar
Sou, Y-s., Tanida, I., Komatsu, M., Ueno, T. & Kominami, E. Phosphatidylserine in addition to phosphatidylethanolamine is an in vitro target of the mammalian Atg8 modifiers, LC3, GABARAP, and GATE-16. J. Biol. Chem.281, 3017–3024 (2006). CASPubMed Google Scholar
Hemelaar, J., Lelyveld, V. S., Kessler, B. M. & Ploegh, H. L. A single protease, Apg4B, is specific for the autophagy-related ubiquitin-like proteins GATE-16, MAP1-LC3, GABARAP, and Apg8L. J. Biol. Chem.278, 51841–51850 (2003). CASPubMed Google Scholar
Kim, J., Huang, W.-P. & Klionsky, D. J. Membrane recruitment of Aut7p in the autophagy and cytoplasm to vacuole targeting pathways requires Aut1p, Aut2p, and the autophagy conjugation complex. J. Cell Biol.152, 51–64 (2001). CASPubMedPubMed Central Google Scholar
Kirisako, T. et al. The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J. Cell Biol.151, 263–276 (2000). CASPubMedPubMed Central Google Scholar
Kim, J., Dalton, V. M., Eggerton, K. P., Scott, S. V. & Klionsky, D. J. Apg7p/Cvt2p is required for the cytoplasm-to-vacuole targeting, macroautophagy, and peroxisome degradation pathways. Mol. Biol. Cell10, 1337–1351 (1999). CASPubMedPubMed Central Google Scholar
Tanida, I. et al. Apg7p/Cvt2p: A novel protein-activating enzyme essential for autophagy. Mol. Biol. Cell10, 1367–1379 (1999). CASPubMedPubMed Central Google Scholar
Tanida, I., Tanida-Miyake, E., Ueno, T. & Kominami, E. The human homolog of Saccharomyces cerevisiae Apg7p is a protein-activating enzyme for multiple substrates including human Apg12p, GATE-16, GABARAP, and MAP-LC3. J. Biol. Chem.276, 1701–1706 (2001). CASPubMed Google Scholar
Tanida, I., Tanida-Miyake, E., Komatsu, M., Ueno, T. & Kominami, E. Human Apg3p/Aut1p homologue is an authentic E2 enzyme for multiple substrates, GATE-16, GABARAP, and MAP-LC3, and facilitates the conjugation of hApg12p to hApg5p. J. Biol. Chem.277, 13739–13744 (2002). CASPubMed Google Scholar
Nemoto, T. et al. The mouse APG10 homologue, an E2-like enzyme for Apg12p conjugation, facilitates MAP-LC3 modification. J. Biol. Chem.278, 39517–39526 (2003). CASPubMed Google Scholar
Shintani, T. et al. Apg10p, a novel protein-conjugating enzyme essential for autophagy in yeast. EMBO J.18, 5234–5241 (1999). CASPubMedPubMed Central Google Scholar
Ichimura, Y. et al. In vivo and in vitro reconstitution of Atg8 conjugation essential for autophagy. J. Biol. Chem.279, 40584–40592 (2004). CASPubMed Google Scholar
Shao, Y., Gao, Z., Feldman, T. & Jiang, X. Stimulation of ATG12-ATG5 conjugation by ribonucleic acid. Autophagy3, 10–16 (2007). CASPubMed Google Scholar
Kuma, A., Mizushima, N., Ishihara, N. & Ohsumi, Y. Formation of the approximately 350-kDa Apg12-Apg5·Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J. Biol. Chem.277, 18619–18625 (2002). CASPubMed Google Scholar
Mizushima, N., Noda, T. & Ohsumi, Y. Apg16p is required for the function of the Apg12p-Apg5p conjugate in the yeast autophagy pathway. EMBO J.18, 3888–3896 (1999). CASPubMedPubMed Central Google Scholar
Matsushita, M. et al. Structure of ATG5·ATG16, a complex essential for autophagy. J. Biol. Chem.282, 6763–6772 (2007). CASPubMed Google Scholar
Kabeya, Y. et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J.19, 5720–5728 (2000). CASPubMedPubMed Central Google Scholar
Huang, W.-P., Scott, S. V., Kim, J. & Klionsky, D. J. The itinerary of a vesicle component, Aut7p/Cvt5p, terminates in the yeast vacuole via the autophagy/Cvt pathways. J. Biol. Chem.275, 5845–5851 (2000). CASPubMed Google Scholar
Monastyrska, I. et al. Atg8 is essential for macropexophagy in Hansenula polymorpha. Traffic6, 66–74 (2005). CASPubMed Google Scholar
Baba, M., Osumi, M., Scott, S. V., Klionsky, D. J. & Ohsumi, Y. Two distinct pathways for targeting proteins from the cytoplasm to the vacuole/lysosome. J. Cell Biol.139, 1687–1695 (1997). CASPubMedPubMed Central Google Scholar
Ogawa, M. et al. Escape of intracellular Shigella from autophagy. Science307, 727–731 (2005). CASPubMed Google Scholar
Sakai, Y., Koller, A., Rangell, L. K., Keller, G. A. & Subramani, S. Peroxisome degradation by microautophagy in Pichia pastoris: identification of specific steps and morphological intermediates. J. Cell Biol.141, 625–636 (1998). CASPubMedPubMed Central Google Scholar
Scott, S. V., Baba, M., Ohsumi, Y. & Klionsky, D. J. Aminopeptidase I is targeted to the vacuole by a nonclassical vesicular mechanism. J. Cell Biol.138, 37–44 (1997). CASPubMedPubMed Central Google Scholar
Klionsky, D. J., Cueva, R. & Yaver, D. S. Aminopeptidase I of Saccharomyces cerevisiae is localized to the vacuole independent of the secretory pathway. J. Cell Biol.119, 287–299 (1992). CASPubMed Google Scholar
Oda, M. N., Scott, S. V., Hefner-Gravink, A., Caffarelli, A. D. & Klionsky, D. J. Identification of a cytoplasm to vacuole targeting determinant in aminopeptidase I. J. Cell Biol.132, 999–1010 (1996). CASPubMed Google Scholar
Scott, S. V. et al. Cytoplasm-to-vacuole targeting and autophagy employ the same machinery to deliver proteins to the yeast vacuole. Proc. Natl Acad. Sci. USA93, 12304–12308 (1996). CASPubMedPubMed Central Google Scholar
Shintani, T. & Klionsky, D. J. Cargo proteins facilitate the formation of transport vesicles in the cytoplasm to vacuole targeting pathway. J. Biol. Chem.279, 29889–29894 (2004). CASPubMed Google Scholar
Kim, J., Scott, S. V., Oda, M. N. & Klionsky, D. J. Transport of a large oligomeric protein by the cytoplasm to vacuole protein targeting pathway. J. Cell Biol.137, 609–618 (1997). CASPubMedPubMed Central Google Scholar
Scott, S. V., Guan, J., Hutchins, M. U., Kim, J. & Klionsky, D. J. Cvt19 is a receptor for the cytoplasm-to-vacuole targeting pathway. Mol. Cell7, 1131–1141 (2001). CASPubMedPubMed Central Google Scholar
Shintani, T., Huang, W.-P., Stromhaug, P. E. & Klionsky, D. J. Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway. Dev. Cell3, 825–837 (2002). CASPubMedPubMed Central Google Scholar
Dunn, W. A., Jr et al. Pexophagy: the selective autophagy of peroxisomes. Autophagy1, 75–83 (2005). CASPubMed Google Scholar
Nakagawa, I. et al. Autophagy defends cells against invading group A Streptococcus. Science306, 1037–1040 (2004). CASPubMed Google Scholar
Rubinsztein, D. C. et al. Autophagy and its possible roles in nervous system diseases, damage and repair. Autophagy1, 11–22 (2005). CASPubMed Google Scholar
Bjorkoy, G. et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol.171, 603–614 (2005). PubMedPubMed Central Google Scholar
Takeshige, K., Baba, M., Tsuboi, S., Noda, T. & Ohsumi, Y. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J. Cell Biol.119, 301–311 (1992). CASPubMed Google Scholar
Tanida, I., Minematsu-Ikeguchi, N., Ueno, T. & Kominami, E. Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy1, 84–91 (2005). CASPubMed Google Scholar
Bampton, E. T., Goemans, C. G., Niranjan, D., Mizushima, N. & Tolkovsky, A. M. The dynamics of autophagy visualized in live cells: from autophagosome formation to fusion with endo/lysosomes. Autophagy1, 23–36 (2005). CASPubMed Google Scholar
Hamasaki, M., Noda, T. & Ohsumi, Y. The early secretory pathway contributes to autophagy in yeast. Cell Struct. Funct.28, 49–54 (2003). CASPubMed Google Scholar
Mukaiyama, H. et al. Modification of a ubiquitin-like protein Paz2 conducted micropexophagy through formation of a novel membrane structure. Mol. Biol. Cell15, 58–70 (2004). CASPubMedPubMed Central Google Scholar
Chang, T. et al. PpATG9 encodes a novel membrane protein that traffics to vacuolar membranes, which sequester peroxisomes during pexophagy in Pichia pastoris. Mol. Biol. Cell16, 4941–4953 (2005). CASPubMedPubMed Central Google Scholar
Nice, D. C., Sato, T. K., Stromhaug, P. E., Emr, S. D. & Klionsky, D. J. Cooperative binding of the cytoplasm to vacuole targeting pathway proteins, Cvt13 and Cvt20, to phosphatidylinositol 3-phosphate at the pre-autophagosomal structure is required for selective autophagy. J. Biol. Chem.277, 30198–30207 (2002). CASPubMed Google Scholar
Leao-Helder, A. N. et al. Atg21p is essential for macropexophagy and microautophagy in the yeast Hansenula polymorpha. FEBS Lett.577, 491–495 (2004). CASPubMed Google Scholar
Ano, Y. et al. A sorting nexin PpAtg24 regulates vacuolar membrane dynamics during pexophagy via binding to phosphatidylinositol-3-phosphate. Mol. Biol. Cell16, 446–457 (2005). CASPubMedPubMed Central Google Scholar
Monastyrska, I. et al. The Hansenula polymorpha ATG25 gene encodes a novel coiled-coil protein that is required for macropexophagy. Autophagy1, 92–100 (2005). CASPubMed Google Scholar
Cao, Y. & Klionsky, D. J. Atg26 is not involved in autophagy-related pathways in Saccharomyces cerevisiae. Autophagy3, 17–20 (2007). CASPubMed Google Scholar
Nazarko, T. Y., Polupanov, A. S., Manjithaya, R. R., Subramani, S. & Sibirny, A. A. The requirement of sterol glucoside for pexophagy in yeast is dependent on the species and nature of peroxisome inducers. Mol. Biol. Cell18, 106–118 (2007). CASPubMedPubMed Central Google Scholar
Oku, M. et al. Peroxisome degradation requires catalytically active sterol glucosyltransferase with a GRAM domain. EMBO J.22, 3231–3241 (2003). CASPubMedPubMed Central Google Scholar
Stasyk, O. V. et al. Atg28, a novel coiled-coil protein involved in autophagic degradation of peroxisomes in the methylotrophic yeast Pichia pastoris. Autophagy2, 30–38 (2006). CASPubMed Google Scholar
Kawamata, T. et al. Characterization of a novel autophagy-specific gene, ATG29. Biochem. Biophys. Res. Commun.338, 1884–1889 (2005). CASPubMed Google Scholar