Terada, N. et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature416, 542–545 (2002). ArticleCASPubMed Google Scholar
Wang, X. et al. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature422, 897–901 (2003). ArticleCASPubMed Google Scholar
Alvarez-Dolado, M. et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature425, 968–973 (2003). ArticleCASPubMed Google Scholar
Jiang, Y. et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature418, 41–49 (2002). ArticleCASPubMed Google Scholar
Clarke, D. L. et al. Generalized potential of adult neural stem cells. Science288, 1660–1663 (2000). ArticleCASPubMed Google Scholar
Toma, J. G. et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nature Cell Biol.3, 778–784 (2001). ArticleCASPubMed Google Scholar
Joannides, A. et al. Efficient generation of neural precursors from adult human skin: astrocytes promote neurogenesis from skin-derived stem cells. Lancet364, 172–178 (2004). ArticleCASPubMed Google Scholar
Le Douarin, N. M. The Neural Crest. (Cambridge University Press, Cambridge, UK, 1982). Google Scholar
Ito, C. Y. et al. Hematopoietic stem cell and progenitor defects in Sca-1/Ly-6A-null mice. Blood101, 517–523 (2003). ArticleCASPubMed Google Scholar
Nieto, M. A., Sargent, M. G., Wilkinson, D. G. & Cooke, J. Control of cell behavior during vertebrate development by Slug, a zinc finger gene. Science264, 835–839 (1994). ArticleCASPubMed Google Scholar
Smith, D. E., Franco del Amo, F. & Gridley, T. Isolation of Sna, a mouse gene homologous to the Drosophila genes snail and escargot: its expression pattern suggests multiple roles during postimplantation development. Development116, 1033–1039 (1992). CASPubMed Google Scholar
Soo, K. et al. Twist function is required for the morphogenesis of the cephalic neural tube and the differentiation of the cranial neural crest cells in the mouse embryo. Dev. Biol.247, 251–270 (2002). ArticleCASPubMed Google Scholar
Conway, S. J., Henderson, D. J. & Copp, A. J. Pax3 is required for cardiac neural crest migration in the mouse: evidence from the splotch (Sp2H) mutant. Development124, 505–514 (1997). CASPubMed Google Scholar
Cheung, M. & Briscoe, J. Neural crest development is regulated by the transcription factor Sox9. Development130, 5681–5693 (2003). ArticleCASPubMed Google Scholar
Le Douarin, N. M. & Dupin, E. Cell lineage analysis in neural crest ontogeny. J. Neurobiol.24, 146–161 (1993). ArticleCASPubMed Google Scholar
Li, L., Cserjesi, P. & Olson, E. N. Dermo-1: a novel twist-related bHLH protein expressed in the developing dermis. Dev. Biol.172, 280–292 (1995). ArticleCASPubMed Google Scholar
Clement-Jones, M. et al. The short stature homeobox gene SHOX is involved in skeletal abnormalities in Turner syndrome. Hum. Mol. Genet.9, 695–702 (2000). ArticleCASPubMed Google Scholar
Stemple, D. L. & Anderson, D. J. Isolation of a stem cell for neurons and glia from the mammalian neural crest. Cell71, 973–985 (1992). ArticleCASPubMed Google Scholar
Monuki, E. S., Weinmaster, G., Kuhn, R. & Lemke G. SCIP: a glial POU domain gene regulated by cyclic AMP. Neuron3, 783–793 (1989). ArticleCASPubMed Google Scholar
Hadjantonakis, A. K., Gertsenstein, M., Ikawa, M., Okabe, M. & Nagy, A. Generating green fluorescent mice by germline transmission of green fluorescent ES cells. Mech. Dev.76, 79–90 (1998). ArticleCASPubMed Google Scholar
White, PM. & Anderson, D. J. In vivo transplantation of mammalian neural crest cells into chick hosts reveals a new autonomic sublineage restriction. Development126, 4351–4363 (1999). CASPubMed Google Scholar
Nishimura, E. K. et al. Dominant role for the niche in melanocyte stem-cell fate determination. Nature416, 854–860 (2002). ArticleCASPubMed Google Scholar
Nocka, K. et al. Expression of c-kit gene products in known cellular targets of W mutations in normal and W mutant mice — evidence for an impaired c-kit kinase in mutant mice. Genes Dev.3, 816–826 (1989). ArticleCASPubMed Google Scholar
Lako, M. et al. Hair follicle dermal cells repopulate the mouse haematopoietic system. J. Cell Sci.115, 3967–3974 (2002). ArticleCASPubMed Google Scholar
Jahoda, C. A. B., Whitehouse, C. J., Reynolds, A. J. & Hole, N. Hair follicle dermal cells differentiate into adipogenic and osteogenic lineages. Exp. Dermatol.12, 849–859 (2003). ArticlePubMed Google Scholar
Paus, R. et al. A comprehensive guide for the recognition and classification of distinct stages of hair follicle morphogenesis. J. Invest. Dermatol.113, 523–32 (1999). ArticleCASPubMed Google Scholar
du Cros, D. L., LeBaron, R. G. & Couchman, J. R. Association of versican with dermal matrices and its potential role in hair follicle development and cycling. J. Invest. Dermatol.105, 426–31 (1995). ArticleCASPubMed Google Scholar
Kishimoto, J. et al. Selective activation of the versican promoter by epithelial–mesenchymal interactions during hair follicle development. Proc. Natl Acad. Sci. USA96, 7336–7341 (1999). ArticleCASPubMedPubMed Central Google Scholar
Jensen, P. J. et al. Serpins in the human hair follicle. J. Invest. Dermatol.114, 917–922 (2000). ArticleCASPubMed Google Scholar
Panteleyev, A. A. et al. Keratin 17 gene expression during the murine hair cycle. J. Invest. Dermatol.108, 324–329 (1997). ArticleCASPubMed Google Scholar
Reddy, S. et al. Characterization of Wnt gene expression in developing and postnatal hair follicles and identification of Wnt5a as a target of Sonic hedgehog in hair follicle morphogenesis. Mech. Dev.107, 69–82 (2001). ArticleCASPubMed Google Scholar
Moll, I., Paus, R., & Moll, R. Merkel cells in mouse skin: intermediate filament pattern, localization, and hair cycle-dependent density. J. Invest. Dermatol.106, 281–287 (1996). ArticleCASPubMed Google Scholar
Jiang, X., Rowitch, D. H., Soriano, P., McMahon, A. P. & Sucov, H. M. Fate of the mammalian cardiac neural crest. Development127, 1607–1616 (2000). CASPubMed Google Scholar
Szeder, V., Grim, M., Halata, Z., Sieber-Blum, M. Neural crest origin of mammalian Merkel cells. Dev. Biol.253, 258–263 2003. ArticleCASPubMed Google Scholar
Fuchs, E. & Raghavan, S. Getting under the skin of epidermal morphogenesis. Nature Rev. Genet.3, 199–209 (2002). ArticleCASPubMed Google Scholar
Botchkareva, N. V., Botchkarev, V. A., Chen, L. H., Lindner, G. & Paus., R. A role for p75 neurotrophin receptor in the control of hair follicle morphogenesis. Dev. Biol.216, 135–153 (1999). ArticleCASPubMed Google Scholar
Morrison, S. J., White, P. M., Zock, C. & Anderson, D. J. Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells. Cell96, 737–749 (1999). ArticleCASPubMed Google Scholar
Peters, E. M. et al. Developmental timing of hair follicle and dorsal skin innervation in mice. J. Comp. Neurol.448, 28–52 (2002). ArticlePubMed Google Scholar
Reynolds, B. A. & Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science255, 1707–1710 (1992). ArticleCASPubMed Google Scholar
Barnabé-Heider, F. & Miller, F. D. Endogenously produced neurotrophins regulate survival and differentiation of cortical progenitors via distinct signaling pathways. J. Neurosci.23, 5149–5160 (2003). ArticlePubMedPubMed Central Google Scholar
Mo, R. et al. Specific and redundant functions of Gli2 and Gli3 zinc finger genes in skeletal patterning and development. Development124, 113–123 (1997). CASPubMed Google Scholar
Mill, P. et al. Sonic hedgehog-dependent activation of Gli2 is essential for embryonic hair follicle development. Genes Dev.17, 282–294 (2003). ArticleCASPubMedPubMed Central Google Scholar
Liu, Y., Lyle, S., Yang, Z. & Cotsarelis, G. Keratin 15 promoter targets putative epithelial stem cells in the hair follicle bulge. J. Invest. Dermatol.121, 963–968 (2003). ArticleCASPubMed Google Scholar