- Carlton, J. et al. Sorting nexin-1 mediates tubular endosome-to-TGN transport through coincidence sensing of high- curvature membranes and 3-phosphoinositides. Curr. Biol. 14, 1791–1800 (2004).
Article CAS PubMed Google Scholar
- Carlton, J. G. et al. Sorting nexin-2 is associated with tubular elements of the early endosome, but is not essential for retromer-mediated endosome-to-TGN transport. J. Cell Sci. 118, 4527–4539 (2005).
Article CAS PubMed PubMed Central Google Scholar
- Wassmer, T. et al. A loss-of-function screen reveals SNX5 and SNX6 as potential components of the mammalian retromer. J. Cell Sci. 120, 45–54 (2007).
Article CAS PubMed Google Scholar
- Wassmer, T. et al. The retromer coat complex coordinates endosomal sorting and dynein-mediated transport, with carrier recognition by the _trans_-Golgi network. Dev. Cell 17, 110–122 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Seaman, M. N. Recycle your receptors with retromer. Trends Cell Biol. 15, 68–75 (2005).
Article CAS PubMed Google Scholar
- Attar, N. & Cullen, P. J. The retromer complex. Adv. Enzyme Regul. 50, 216–236 (2009).
Article PubMed Google Scholar
- Seaman, M. N. Identification of a novel conserved sorting motif required for retromer-mediated endosome-to-TGN retrieval. J. Cell Sci. 120, 2378–2389 (2007).
Article CAS PubMed Google Scholar
- Cullen, P. J. Endosomal sorting and signalling: an emerging role for sorting nexins. Nat. Rev. Mol. Cell Biol. 9, 574–582 (2008).
Article CAS PubMed Google Scholar
- Seaman, M. N., McCaffery, J. M. & Emr, S. D. A membrane coat complex essential for endosome-to-Golgi retrograde transport in yeast. J. Cell Biol. 142, 665–681 (1998).
Article CAS PubMed PubMed Central Google Scholar
- Seaman, M. N. Cargo-selective endosomal sorting for retrieval to the Golgi requires retromer. J. Cell Biol. 165, 111–122 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Arighi, C. N., Hartnell, L. M., Aguilar, R. C., Haft, C. R. & Bonifacino, J. S. Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor. J. Cell Biol. 165, 123–133 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Banziger, C. et al. Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell 125, 509–522 (2006).
Article CAS PubMed Google Scholar
- Bartscherer, K., Pelte, N., Ingelfinger, D. & Boutros, M. Secretion of Wnt ligands requires Evi, a conserved transmembrane protein. Cell 125, 523–533 (2006).
Article CAS PubMed Google Scholar
- Goodman, R. M. et al. Sprinter: a novel transmembrane protein required for Wg secretion and signaling. Development 133, 4901–4911 (2006).
Article CAS PubMed Google Scholar
- Belenkaya, T. Y. et al. The retromer complex influences Wnt secretion by recycling Wntless from endosomes to the _trans_-Golgi network. Dev. Cell 14, 120–131 (2008).
Article CAS PubMed Google Scholar
- Franch-Marro, X. et al. Wingless secretion requires endosome-to-Golgi retrieval of Wntless/Evi/Sprinter by the retromer complex. Nat. Cell Biol. 10, 170–177 (2008).
Article CAS PubMed Google Scholar
- Pan, C. L. et al. C. elegans AP-2 and retromer control Wnt signaling by regulating mig-14/Wntless. Dev. Cell 14, 132–139 (2008).
Article CAS PubMed Google Scholar
- Port, F. et al. Wingless secretion promotes and requires retromer-dependent cycling of Wntless. Nat. Cell Biol. 10, 178–185 (2008).
Article CAS PubMed Google Scholar
- Yang, P. T. et al. Wnt signaling requires retromer-dependent recycling of MIG-14/Wntless in Wnt-producing cells. Dev. Cell 14, 140–147 (2008).
Article CAS PubMed Google Scholar
- Nothwehr, S. F. & Hindes, A. E. The yeast VPS5/GRD2 gene encodes a sorting nexin-1-like protein required for localizing membrane proteins to the late Golgi. J. Cell Sci. 110 (Pt 9), 1063–1072 (1997).
Google Scholar
- Hettema, E. H., Lewis, M. J., Black, M. W. & Pelham, H. R. Retromer and the sorting nexins Snx4/41/42 mediate distinct retrieval pathways from yeast endosomes. EMBO J. 22, 548–557 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Mari, M. et al. SNX1 defines an early endosomal recycling exit for sortilin and mannose 6-phosphate receptors. Traffic 9, 380–393 (2008).
Article CAS PubMed Google Scholar
- Coudreuse, D. Y., Roel, G., Betist, M. C., Destree, O. & Korswagen, H. C. Wnt gradient formation requires retromer function in Wnt-producing cells. Science 312, 921–924 (2006).
Article CAS PubMed Google Scholar
- Prasad, B. C. & Clark, S. G. Wnt signaling establishes anteroposterior neuronal polarity and requires retromer in C. elegans . Development 133, 1757–1766 (2006).
Article CAS Google Scholar
- Chen, D. et al. Retromer is required for apoptotic cell clearance by phagocytic receptor recycling. Science 327, 1261–1264 (2010).
Article CAS PubMed Google Scholar
- Zecca, M., Basler, K. & Struhl, G. Direct and long-range action of a Wingless morphogen gradient. Cell 87, 833–844 (1996).
Article CAS PubMed Google Scholar
- Harris, J., Honigberg, L., Robinson, N. & Kenyon, C. Neuronal cell migration in C. elegans: regulation of Hox gene expression and cell position. Development 122, 3117–3131 (1996).
CAS PubMed Google Scholar
- Salser, S. J. & Kenyon, C. Activation of a C. elegans Antennapedia homologue in migrating cells controls their direction of migration. Nature 355, 255–258 (1992).
Article CAS PubMed Google Scholar
- Korswagen, H. C. et al. The Axin-like protein PRY-1 is a negative regulator of a canonical Wnt pathway in C. elegans . Genes Dev. 16, 1291–1302 (2002).
Article CAS PubMed PubMed Central Google Scholar
- Maloof, J. N., Whangbo, J., Harris, J. M., Jongeward, G. D. & Kenyon, C. A Wnt signaling pathway controls Hox gene expression and neuroblast migration in C. elegans . Development 126, 37–49 (1999).
CAS PubMed Google Scholar
- Hidalgo, A. & Ingham, P. Cell patterning in the Drosophila segment: spatial regulation of the segment polarity gene patched. Development 110, 291–301 (1990).
CAS PubMed Google Scholar
- Entchev, E. V., Schwabedissen, A. & Gonzalez-Gaitan, M. Gradient formation of the TGF_β_ homolog Dpp. Cell 103, 981–991 (2000).
Article CAS PubMed Google Scholar
- Teleman, A. A. & Cohen, S. M. Dpp gradient formation in the Drosophila wing imaginal disc. Cell 103, 971–980 (2000).
Article CAS PubMed Google Scholar
- Seaman, M. N., Harbour, M. E., Tattersall, D., Read, E. & Bright, N. Membrane recruitment of the cargo-selective retromer subcomplex is catalysed by the small GTPase Rab7 and inhibited by the Rab-GAP TBC1D5. J. Cell Sci. 122, 2371–2382 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Rojas, R. et al. Regulation of retromer recruitment to endosomes by sequential action of Rab5 and Rab7. J. Cell Biol. 183, 513–526 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Popoff, V. et al. Analysis of articulation between clathrin and retromer in retrograde sorting on early endosomes. Traffic 10, 1868–1880 (2009).
Article CAS PubMed Google Scholar
- Xu, Y., Hortsman, H., Seet, L., Wong, S. H. & Hong, W. SNX3 regulates endosomal function through its PX-domain-mediated interaction with PtdIns(3)P. Nat. Cell Biol. 3, 658–666 (2001).
Article CAS PubMed Google Scholar
- Skanland, S. S., Walchli, S., Brech, A. & Sandvig, K. SNX4 in complex with clathrin and dynein: implications for endosome movement. PLoS ONE 4, e5935 (2009).
Article PubMed PubMed Central Google Scholar
- Lorenowicz, M. J. & Korswagen, H. C. Sailing with the Wnt: charting the Wnt processing and secretion route. Exp. Cell Res. 315, 2683–2689 (2009).
Article CAS PubMed Google Scholar
- Port, F. & Basler, K. Wnt trafficking: new insights into Wnt maturation, secretion and spreading. Traffic 11, 1265–1271 (2010).
Article CAS PubMed Google Scholar
- Voos, W. & Stevens, T. H. Retrieval of resident late-Golgi membrane proteins from the prevacuolar compartment of Saccharomyces cerevisiae is dependent on the function of Grd19p. J. Cell Biol. 140, 577–590 (1998).
Article CAS PubMed PubMed Central Google Scholar
- Nothwehr, S. F., Ha, S. A. & Bruinsma, P. Sorting of yeast membrane proteins into an endosome-to-Golgi pathway involves direct interaction of their cytosolic domains with Vps35p. J. Cell Biol. 151, 297–310 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Strochlic, T. I., Setty, T. G., Sitaram, A. & Burd, C. G. Grd19/Snx3p functions as a cargo-specific adapter for retromer-dependent endocytic recycling. J. Cell Biol. 177, 115–125 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Yu, J. W. & Lemmon, M. A. All phox homology (PX) domains from Saccharomyces cerevisiae specifically recognize phosphatidylinositol 3-phosphate. J. Biol. Chem. 276, 44179–44184 (2001).
Article CAS PubMed Google Scholar
- Duncan, J. R. & Kornfeld, S. Intracellular movement of two mannose 6-phosphate receptors: return to the Golgi apparatus. J. Cell Biol. 106, 617–628 (1988).
Article CAS PubMed Google Scholar
- Jin, M., Sahagian, G. G. Jr & Snider, M. D. Transport of surface mannose 6-phosphate receptor to the Golgi complex in cultured human cells. J. Biol. Chem. 264, 7675–7680 (1989).
CAS PubMed Google Scholar
- Lin, S. X., Mallet, W. G., Huang, A. Y. & Maxfield, F. R. Endocytosed cation-independent mannose 6-phosphate receptor traffics via the endocytic recycling compartment en route to the _trans_-Golgi network and a subpopulation of late endosomes. Mol. Biol. Cell 15, 721–733 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Lewis, J. A. & Fleming, J. T. Basic culture methods. Methods Cell Biol. 48, 3–29 (1995).
Article CAS PubMed Google Scholar
- Ch’ng, Q. et al. Identification of genes that regulate a left-right asymmetric neuronal migration in Caenorhabditis elegans . Genetics 164, 1355–1367 (2003).
PubMed PubMed Central Google Scholar
- Whangbo, J., Harris, J. & Kenyon, C. Multiple levels of regulation specify the polarity of an asymmetric cell division in C. elegans . Development 127, 4587–4598 (2000).
CAS PubMed Google Scholar
- Herman, M. A. & Horvitz, H. R. The Caenorhabditis elegans gene lin-44 controls the polarity of asymmetric cell divisions. Development 120, 1035–1047 (1994).
CAS PubMed Google Scholar
- Mello, C. C. & Fire, A. in Caenorhabditis elegans: Modern biological analysis of an organism, Vol. 48 (eds Epstein, H. F. & Shakes, D. C.) 451–482 (Academic, 1995).
Book Google Scholar
- Kamath, R. S. et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231–237 (2003).
Article CAS PubMed Google Scholar
- Baeg, G. H., Lin, X., Khare, N., Baumgartner, S. & Perrimon, N. Heparan sulfate proteoglycans are critical for the organization of the extracellular distribution of Wingless. Development 128, 87–94 (2001).
CAS PubMed Google Scholar
- Kawakami, A. et al. Rab7 regulates maturation of melanosomal matrix protein gp100/Pmel17/Silv. J. Invest. Dermatol. 128, 143–150 (2008).
Article CAS PubMed Google Scholar
- Bolte, S. & Cordelieres, F. P. A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 224, 213–232 (2006).
Article CAS PubMed Google Scholar