SHARPIN is an endogenous inhibitor of β1-integrin activation (original) (raw)
Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. Cell110, 673–687 (2002). ArticleCAS Google Scholar
Moser, M., Legate, K. R., Zent, R. & Fassler, R. The tail of integrins, talin, and kindlins. Science324, 895–899 (2009). ArticleCAS Google Scholar
Shattil, S. J., Kim, C. & Ginsberg, M. H. The final steps of integrin activation: the end game. Nat. Rev. Mol. Cell Biol.11, 288–300 (2010). ArticleCAS Google Scholar
Larjava, H., Plow, E. F. & Wu, C. Kindlins: essential regulators of integrin signalling and cell-matrix adhesion. EMBO Rep.9, 1203–1208 (2008). ArticleCAS Google Scholar
Margadant, C., Charafeddine, R. A. & Sonnenberg, A. Unique and redundant functions of integrins in the epidermis. FASEB J.24, 4133–4152 (2010). ArticleCAS Google Scholar
Cantor, J. M., Ginsberg, M. H. & Rose, D. M. Integrin-associated proteins as potential therapeutic targets. Immunol. Rev.223, 236–251 (2008). ArticleCAS Google Scholar
Hogg, N. & Bates, P. A. Genetic analysis of integrin function in man: LAD-1 and other syndromes. Matrix Biol.19, 211–222 (2000). ArticleCAS Google Scholar
Lim, S. et al. Sharpin, a novel postsynaptic density protein that directly interacts with the shank family of proteins. Mol. Cell. Neurosci.17, 385–397 (2001). ArticleCAS Google Scholar
Byron, A. et al. Anti-integrin monoclonal antibodies. J. Cell Sci.122, 4009–4011 (2009). ArticleCAS Google Scholar
Taliaferro-Smith, L. et al. LKB1 is required for adiponectin-mediated modulation of AMPK-S6K axis and inhibition of migration and invasion of breast cancer cells. Oncogene28, 2621–2633 (2009). ArticleCAS Google Scholar
Ewart, M. A., Kohlhaas, C. F. & Salt, I. P. Inhibition of tumor necrosis factor α-stimulated monocyte adhesion to human aortic endothelial cells by AMP-activated protein kinase. Arterioscler. Thromb. Vasc. Biol.28, 2255–2257 (2008). ArticleCAS Google Scholar
Guo, D. L. et al. Reduced expression of EphB2 that parallels invasion and metastasis in colorectal tumours. Carcinogenesis27, 454–464 (2006). ArticleCAS Google Scholar
Huusko, P. et al. Nonsense-mediated decay microarray analysis identifies mutations of EPHB2 in human prostate cancer. Nat. Genet.36, 979–983 (2004). ArticleCAS Google Scholar
Zou, J. X. et al. An Eph receptor regulates integrin activity through R-Ras. Proc. Natl Acad. Sci. USA96, 13813–13818 (1999). ArticleCAS Google Scholar
Ivaska, J. et al. Integrin–protein kinase C relationships. Biochem. Soc. Trans.31, 90–93 (2003). ArticleCAS Google Scholar
Harper, M. T. & Poole, A. W. Diverse functions of protein kinase C isoforms in platelet activation and thrombus formation. J. Thromb. Haemost.8, 454–462 (2010). ArticleCAS Google Scholar
Jung, J. et al. Newly identified tumor-associated role of human Sharpin. Mol. Cell. Biochem.340, 161–167 (2010). ArticleCAS Google Scholar
Calderwood, D. A. et al. The phosphotyrosine binding-like domain of talin activates integrins. J. Biol. Chem.277, 21749–21758 (2002). ArticleCAS Google Scholar
Schwartz, M. A. & Assoian, R. K. Integrins and cell proliferation: regulation of cyclin-dependent kinases via cytoplasmic signaling pathways. J. Cell Sci.114, 2553–2560 (2001). CASPubMed Google Scholar
Moser, M., Nieswandt, B., Ussar, S., Pozgajova, M. & Fassler, R. Kindlin-3 is essential for integrin activation and platelet aggregation. Nat. Med.14, 325–330 (2008). ArticleCAS Google Scholar
Palecek, S. P., Loftus, J. C., Ginsberg, M. H., Lauffenburger, D. A. & Horwitz, A. F. Integrin-ligand binding properties govern cell migration speed through cell–substratum adhesiveness. Nature385, 537–540 (1997). ArticleCAS Google Scholar
Kiema, T. et al. The molecular basis of filamin binding to integrins and competition with talin. Mol. Cell21, 337–347 (2006). ArticleCAS Google Scholar
Anthis, N. J. et al. β integrin tyrosine phosphorylation is a conserved mechanism for regulating talin-induced integrin activation. J. Biol. Chem.284, 36700–36710 (2009). ArticleCAS Google Scholar
Elliott, P. R. et al. The structure of the talin head reveals a novel extended conformation of the FERM domain. Structure18, 1289–1299 (2010). ArticleCAS Google Scholar
Hughes, P. E. et al. Breaking the integrin hinge. A defined structural constraint regulates integrin signaling. J. Biol. Chem.271, 6571–6574 (1996). ArticleCAS Google Scholar
LaFlamme, S. E., Akiyama, S. K. & Yamada, K. M. Regulation of fibronectin receptor distribution. J. Cell Biol.117, 437–447 (1992). ArticleCAS Google Scholar
Chen, Y. P. et al. ‘Inside-out’ signal transduction inhibited by isolated integrin cytoplasmic domains. J. Biol. Chem.269, 18307–18310 (1994). CASPubMed Google Scholar
Parsons, M., Messent, A. J., Humphries, J. D., Deakin, N. O. & Humphries, M. J. Quantification of integrin receptor agonism by fluorescence lifetime imaging. J. Cell Sci.121, 265–271 (2008). ArticleCAS Google Scholar
Tadokoro, S. et al. Talin binding to integrin β tails: a final common step in integrin activation. Science302, 103–106 (2003). ArticleCAS Google Scholar
Montanez, E. et al. Kindlin-2 controls bidirectional signaling of integrins. Genes Dev.22, 1325–1330 (2008). ArticleCAS Google Scholar
Harburger, D. S., Bouaouina, M. & Calderwood, D. A. Kindlin-1 and -2 directly bind the C-terminal region of β integrin cytoplasmic tails and exert integrin-specific activation effects. J. Biol. Chem.284, 11485–11497 (2009). ArticleCAS Google Scholar
Ma, Y. Q., Qin, J., Wu, C. & Plow, E. F. Kindlin-2 (Mig-2): a co-activator of β3 integrins. J. Cell Biol.181, 439–446 (2008). ArticleCAS Google Scholar
Gerlach, B. et al. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature471, 591–596 (2011). ArticleCAS Google Scholar
Ikeda, F. et al. SHARPIN forms a linear ubiquitin ligase complex regulating NF-_κ_B activity and apoptosis. Nature471, 637–641 (2011). ArticleCAS Google Scholar
Tokunaga, F. et al. SHARPIN is a component of the NF-_κ_B-activating linear ubiquitin chain assembly complex. Nature471, 633–636 (2011). ArticleCAS Google Scholar
Soderberg, O. et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat. Methods3, 995–1000 (2006). Article Google Scholar
Tuomi, S. et al. PKCε regulation of an α5 integrin-ZO-1 complex controls lamellae formation in migrating cancer cells. Sci. Signal.2, ra32 (2009). Article Google Scholar
Askari, J. A. et al. Focal adhesions are sites of integrin extension. J. Cell Biol.188, 891–903 (2010). ArticleCAS Google Scholar
Liang, Y., Seymour, R. E. & Sundberg, J. P. Inhibition of NF-κB signaling retards eosinophilic dermatitis in SHARPIN-deficient mice. J. Invest. Dermatol.131, 141–149 (2011). ArticleCAS Google Scholar
Seymour, R. E. et al. Spontaneous mutations in the mouse Sharpin gene result in multiorgan inflammation, immune system dysregulation and dermatitis. Genes Immun.8, 416–421 (2007). ArticleCAS Google Scholar
Tokunaga, F. et al. Involvement of linear polyubiquitylation of NEMO in NF-κB activation. Nat. Cell Biol.11, 123–132 (2009). ArticleCAS Google Scholar
Wegener, K. L. et al. Structural basis of integrin activation by talin. Cell128, 171–182 (2007). ArticleCAS Google Scholar
Millon-Fremillon, A. et al. Cell adaptive response to extracellular matrix density is controlled by ICAP-1-dependent β1-integrin affinity. J. Cell Biol.180, 427–441 (2008). ArticleCAS Google Scholar
Nevo, J. et al. Mammary-derived growth inhibitor (MDGI) interacts with integrin α-subunits and suppresses integrin activity and invasion. Oncogene29, 6452–6463 (2010). ArticleCAS Google Scholar
Clark, A. J., Neil, C., Gusterson, B., McWhir, J. & Binas, B. Deletion of the gene encoding H-FABP/MDGI has no overt effects in the mammary gland. Transgenic Res.9, 439–444 (2000). ArticleCAS Google Scholar
Legate, K. R., Wickstrom, S. A. & Fassler, R. Genetic and cell biological analysis of integrin outside-in signaling. Genes Dev.23, 397–418 (2009). ArticleCAS Google Scholar
He, L., Ingram, A., Rybak, A. P. & Tang, D. Shank-interacting protein-like 1 promotes tumorigenesis via PTEN inhibition in human tumor cells. J. Clin. Invest.120, 2094–2108 (2010). ArticleCAS Google Scholar
Landgraf, K. et al. Sipl1 and Rbck1 are novel Eya1-binding proteins with a role in craniofacial development. Mol. Cell. Biol.30, 5764–5775 (2010). ArticleCAS Google Scholar
Gustin, J. A., Maehama, T., Dixon, J. E. & Donner, D. B. The PTEN tumor suppressor protein inhibits tumor necrosis factor-induced nuclear factor κB activity. J. Biol. Chem.276, 27740–27744 (2001). ArticleCAS Google Scholar
Kilpinen, S. et al. Systematic bioinformatic analysis of expression levels of 17,330 human genes across 9,783 samples from 175 types of healthy and pathological tissues. Genome Biol.9, R139 (2008). Article Google Scholar
O’Toole, T. E. et al. Modulation of the affinity of integrin α IIb β3 (GPIIb-IIIa) by the cytoplasmic domain of α IIb. Science254, 845–847 (1991). Article Google Scholar
Rantala, J. K. et al. A cell spot microarray method for production of high density siRNA transfection microarrays. BMC Genomics12, 162 (2011). ArticleCAS Google Scholar
Kraemer, A. et al. Dynamic interaction of cAMP with the Rap guanine-nucleotide exchange factor Epac1. J. Mol. Biol.306, 1167–1177 (2001). ArticleCAS Google Scholar
Clark, K. et al. A specific α5β1-integrin conformation promotes directionalintegrin translocation and fibronectin matrix formation. J. Cell Sci.118, 291–300 (2005). ArticleCAS Google Scholar
Hogan, B. Manipulating the Mouse Embryo: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1986). Google Scholar
Laukaitis, C. M., Webb, D. J., Donais, K. & Horwitz, A. F. Differential dynamics of α5 integrin, paxillin, and α-actinin during formation and disassembly of adhesions in migrating cells. J. Cell Biol.153, 1427–1440 (2001). ArticleCAS Google Scholar
Caswell, P. T. et al. Rab25 associates with α5β1 integrin to promote invasive migration in 3D microenvironments. Dev. Cell13, 496–510 (2007). ArticleCAS Google Scholar