Adult interfollicular tumour-initiating cells are reprogrammed into an embryonic hair follicle progenitor-like fate during basal cell carcinoma initiation (original) (raw)
Pasca di Magliano, M. & Hebrok, M. Hedgehog signalling in cancer formation and maintenance. Nat. Rev. Cancer3, 903–911 (2003). ArticlePubMed Google Scholar
Xie, J. et al. Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature391, 90–92 (1998). ArticleCASPubMed Google Scholar
Mao, J. et al. A novel somatic mouse model to survey tumorigenic potential applied to the Hedgehog pathway. Cancer Res.66, 10171–10178 (2006). ArticleCASPubMedPubMed Central Google Scholar
Youssef, K. K. et al. Identification of the cell lineage at the origin of basal cell carcinoma. Nat. Cell Biol.12, 299–305 (2010). ArticleCASPubMed Google Scholar
Wong, S. Y. & Reiter, J. F. Wounding mobilizes hair follicle stem cells to form tumors. Proc. Natl Acad. Sci. USA108, 4093–4098 (2011). ArticleCASPubMedPubMed Central Google Scholar
Shirahama, S., Furukawa, F., Wakita, H. & Takigawa, M. E- and P-cadherin expression in tumor tissues and soluble E-cadherin levels in sera of patients with skin cancer. J. Dermatol. Sci.13, 30–36 (1996). ArticleCASPubMed Google Scholar
Yoshikawa, K., Katagata, Y. & Kondo, S. Biochemical and immunohistochemical analyses of keratin expression in basal cell carcinoma. J. Dermatol. Sci.17, 15–23 (1998). ArticleCASPubMed Google Scholar
Markey, A. C., Lane, E. B., Macdonald, D. M. & Leigh, I. M. Keratin expression in basal cell carcinomas. Br. J. Dermatol.126, 154–160 (1992). ArticleCASPubMed Google Scholar
Vidal, V. P. et al. Sox9 is essential for outer root sheath differentiation and the formation of the hair stem cell compartment. Curr. Biol.15, 1340–1351 (2005). ArticleCASPubMed Google Scholar
Vidal, V. P., Ortonne, N. & Schedl, A. SOX9 expression is a general marker of basal cell carcinoma and adnexal-related neoplasms. J. Cutan. Pathol.35, 373–379 (2008). ArticlePubMed Google Scholar
Tanese, K. et al. G-protein-coupled receptor GPR49 is up-regulated in basal cell carcinoma and promotes cell proliferation and tumor formation. Am. J. Pathol.173, 835–843 (2008). ArticleCASPubMedPubMed Central Google Scholar
Yang, S. H. et al. Pathological responses to oncogenic Hedgehog signaling in skin are dependent on canonical Wnt/ β3-catenin signaling. Nat. Genet.40, 1130–1135 (2008). ArticleCASPubMedPubMed Central Google Scholar
Blanpain, C., Lowry, W. E., Geoghegan, A., Polak, L. & Fuchs, E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell118, 635–648 (2004). ArticleCASPubMed Google Scholar
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA102, 15545–15550 (2005). ArticleCASPubMedPubMed Central Google Scholar
Osorio, K. M. et al. Runx1 modulates developmental, but not injury-driven, hair follicle stem cell activation. Development135, 1059–1068 (2008). ArticleCASPubMed Google Scholar
Osorio, K. M., Lilja, K. C. & Tumbar, T. Runx1 modulates adult hair follicle stem cell emergence and maintenance from distinct embryonic skin compartments. J. Cell Biol.193, 235–250 (2011). ArticleCASPubMedPubMed Central Google Scholar
Ellis, T. et al. The transcriptional repressor CDP (Cutl1) is essential for epithelial cell differentiation of the lung and the hair follicle. Genes Dev.15, 2307–2319 (2001). ArticleCASPubMedPubMed Central Google Scholar
Wang, G. Y., Wang, J., Mancianti, M. L. & Epstein, E. H. Jr Basal cell carcinomas arise from hair follicle stem cells in Ptch1(+/-) mice. Cancer Cell19, 114–124 (2011). ArticleCASPubMedPubMed Central Google Scholar
Kasper, M. et al. Wounding enhances epidermal tumorigenesis by recruiting hair follicle keratinocytes. Proc. Natl Acad. Sci. USA108, 4099–4104 (2011). ArticleCASPubMedPubMed Central Google Scholar
Uhmann, A. et al. The Hedgehog receptor Patched controls lymphoid lineage commitment. Blood110, 1814–1823 (2007). ArticleCASPubMed Google Scholar
DasGupta, R. & Fuchs, E. Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development126, 4557–4568 (1999). CASPubMed Google Scholar
Enshell-Seijffers, D., Lindon, C., Kashiwagi, M. & Morgan, B. A. β-catenin activity in the dermal papilla regulates morphogenesis and regeneration of hair. Dev. Cell18, 633–642 (2010). ArticleCASPubMedPubMed Central Google Scholar
Rendl, M., Lewis, L. & Fuchs, E. Molecular dissection of mesenchymal-epithelial interactions in the hair follicle. PLoS Biol.3, e331 (2005). ArticlePubMedPubMed Central Google Scholar
Maretto, S. et al. Mapping Wnt/ β-catenin signaling during mouse development and in colorectal tumors. Proc. Natl Acad. Sci. USA100, 3299–3304 (2003). ArticleCASPubMedPubMed Central Google Scholar
Tumbar, T. et al. Defining the epithelial stem cell niche in skin. Science303, 359–363 (2004). ArticleCASPubMed Google Scholar
Morris, R. J. et al. Capturing and profiling adult hair follicle stem cells. Nat. Biotechnol.22, 411–417 (2004). ArticleCASPubMed Google Scholar
Vasioukhin, V., Bauer, C., Degenstein, L., Wise, B. & Fuchs, E. Hyperproliferation and defects in epithelial polarity upon conditional ablation of α-catenin in skin. Cell104, 605–617 (2001). ArticleCASPubMed Google Scholar
Huelsken, J., Vogel, R., Erdmann, B., Cotsarelis, G. & Birchmeier, W. β-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell105, 533–545 (2001). ArticleCASPubMed Google Scholar
Andl, T., Reddy, S. T., Gaddapara, T. & Millar, S. E. WNT signals are required for the initiation of hair follicle development. Dev. Cell2, 643–653 (2002). ArticleCASPubMed Google Scholar
Enshell-Seijffers, D., Lindon, C., Wu, E., Taketo, M. M. & Morgan, B. A. β-catenin activity in the dermal papilla of the hair follicle regulates pigment-type switching. Proc. Natl Acad. Sci. USA107, 21564–21569 (2010). ArticleCASPubMedPubMed Central Google Scholar
Collins, C. A., Kretzschmar, K. & Watt, F. M. Reprogramming adult dermis to a neonatal state through epidermal activation of β-catenin. Development138, 5189–5199 (2011). ArticleCASPubMedPubMed Central Google Scholar
Crowson, A. N. Basal cell carcinoma: biology, morphology and clinical implications. Mod. Pathol.19 (Suppl 2), S127–S147 (2006). ArticlePubMed Google Scholar
El-Bahrawy, M., El-Masry, N., Alison, M., Poulsom, R. & Fallowfield, M. Expression of β-catenin in basal cell carcinoma. Br. J. Dermatol.148, 964–970 (2003). ArticleCASPubMed Google Scholar
Saldanha, G., Ghura, V., Potter, L. & Fletcher, A. Nuclear β-catenin in basal cell carcinoma correlates with increased proliferation. Br. J. Dermatol.151, 157–164 (2004). ArticleCASPubMed Google Scholar
Kriegl, L., Horst, D., Kirchner, T. & Jung, A. LEF-1 expression in basal cell carcinomas. Br. J. Dermatol.160, 1353–1356 (2009). ArticleCASPubMed Google Scholar
Ben-Porath, I. et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat. Genet.40, 499–507 (2008). ArticleCASPubMedPubMed Central Google Scholar
Kim, J. et al. A Myc network accounts for similarities between embryonic stem and cancer cell transcription programs. Cell143, 313–324 (2010). ArticleCASPubMedPubMed Central Google Scholar
Gat, U., DasGupta, R., Degenstein, L. & Fuchs, E. De Novo hair follicle morphogenesis and hair tumors in mice expressing a truncated β-catenin in skin. Cell95, 605–614 (1998). ArticleCASPubMed Google Scholar
St-Jacques, B. et al. Sonic hedgehog signaling is essential for hair development. Curr. Biol.8, 1058–1068 (1998). ArticleCASPubMed Google Scholar
Silva-Vargas, V. et al. β-catenin and Hedgehog signal strength can specify number and location of hair follicles in adult epidermis without recruitment of bulge stem cells. Dev. Cell9, 121–131 (2005). ArticleCASPubMed Google Scholar
Zhang, Y. et al. Activation of {β}-catenin signaling programs embryonic epidermis to hair follicle fate. Development135, 2161–2172 (2008). ArticleCASPubMed Google Scholar
Krahl, D. & Sellheyer, K. Basal cell carcinoma and pilomatrixoma mirror human follicular embryogenesis as reflected by their differential expression patterns of SOX9 and β-catenin. Br. J. Dermatol.162, 1294–1301 (2010). ArticleCASPubMed Google Scholar
Vasioukhin, V., Degenstein, L., Wise, B. & Fuchs, E. The magical touch: genome targeting in epidermal stem cells induced by tamoxifen application to mouse skin. Proc. Natl Acad. Sci. USA96, 8551–8556 (1999). ArticleCASPubMedPubMed Central Google Scholar
Means, A. L., Xu, Y., Zhao, A., Ray, K. C. & Gu, G. A CK19(CreERT) knockin mouse line allows for conditional DNA recombination in epithelial cells in multiple endodermal organs. Genesis46, 318–323 (2008). ArticleCASPubMedPubMed Central Google Scholar
Gentleman, R. C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol.5, R80 (2004). ArticlePubMedPubMed Central Google Scholar