Identification of the cell lineage at the origin of basal cell carcinoma (original) (raw)
Pardal, R., Clarke, M. F. & Morrison, S. J. Applying the principles of stem-cell biology to cancer. Nature Rev. Cancer3, 895–902 (2003). ArticleCAS Google Scholar
Clarke, M. F. & Fuller, M. Stem cells and cancer: two faces of Eve. Cell124, 1111–1115 (2006). ArticleCAS Google Scholar
Owens, D. M. & Watt, F. M. Contribution of stem cells and differentiated cells to epidermal tumours. Nature Rev. Cancer3, 444–451 (2003). ArticleCAS Google Scholar
Perez-Losada, J. & Balmain, A. Stem-cell hierarchy in skin cancer. Nature Rev. Cancer3, 434–443 (2003). ArticleCAS Google Scholar
Epstein, E. H. Basal cell carcinomas: attack of the hedgehog. Nature Rev. Cancer8, 743–754 (2008). ArticleCAS Google Scholar
Pasca di Magliano, M. & Hebrok, M. Hedgehog signalling in cancer formation and maintenance. Nature Rev. Cancer3, 903–911 (2003). Article Google Scholar
Johnson, R. L. et al. Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science272, 1668–1671 (1996). ArticleCAS Google Scholar
Hahn, H. et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell85, 841–851 (1996). ArticleCAS Google Scholar
Xie, J. et al. Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature391, 90–92 (1998). ArticleCAS Google Scholar
Grachtchouk, M. et al. Basal cell carcinomas in mice overexpressing Gli2 in skin. Nature Genet.24, 216–217 (2000). ArticleCAS Google Scholar
Grachtchouk, V. et al. The magnitude of hedgehog signaling activity defines skin tumor phenotype. EMBO J.22, 2741–2751 (2003). ArticleCAS Google Scholar
Dahmane, N., Lee, J., Robins, P., Heller, P. & Ruiz i Altaba, A. Activation of the transcription factor Gli1 and the Sonic hedgehog signalling pathway in skin tumours. Nature389, 876–881 (1997). ArticleCAS Google Scholar
Mao, J. et al. A novel somatic mouse model to survey tumorigenic potential applied to the Hedgehog pathway. Cancer Res.66, 10171–10178 (2006). ArticleCAS Google Scholar
Fan, H., Oro, A. E., Scott, M. P. & Khavari, P. A. Induction of basal cell carcinoma features in transgenic human skin expressing Sonic Hedgehog. Nature Med.3, 788–792 (1997). ArticleCAS Google Scholar
Blanpain, C. & Fuchs, E. Epidermal homeostasis: a balancing act of stem cells in the skin. Natutre Rev. Mol. Cell Biol.10, 207–217 (2009). ArticleCAS Google Scholar
Tumbar, T. et al. Defining the epithelial stem cell niche in skin. Science303, 359–363 (2004). ArticleCAS Google Scholar
Blanpain, C., Lowry, W. E., Geoghegan, A., Polak, L. & Fuchs, E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell118, 635–648 (2004). ArticleCAS Google Scholar
Ito, M. et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nature Med.11, 1351–1354 (2005). ArticleCAS Google Scholar
Morris, R. J. et al. Capturing and profiling adult hair follicle stem cells. Nature Biotechnol.22, 411–417 (2004). ArticleCAS Google Scholar
Levy, V., Lindon, C., Harfe, B. D. & Morgan, B. A. Distinct stem cell populations regenerate the follicle and interfollicular epidermis. Dev. Cell9, 855–861 (2005). ArticleCAS Google Scholar
Levy, V., Lindon, C., Zheng, Y., Harfe, B. D. & Morgan, B. A. Epidermal stem cells arise from the hair follicle after wounding. FASEB J.21, 1358–1366 (2007). ArticleCAS Google Scholar
Kolodka, T. M., Garlick, J. A. & Taichman, L. B. Evidence for keratinocyte stem cells in vitro: long term engraftment and persistence of transgene expression from retrovirus-transduced keratinocytes. Proc. Natl Acad. Sci. USA95, 4356–4361 (1998). ArticleCAS Google Scholar
Ghazizadeh, S. & Taichman, L. B. Multiple classes of stem cells in cutaneous epithelium: a lineage analysis of adult mouse skin. EMBO J.20, 1215–1222 (2001). ArticleCAS Google Scholar
Ro, S. & Rannala, B. A stop-EGFP transgenic mouse to detect clonal cell lineages generated by mutation. EMBO Rep.5, 914–920 (2004). ArticleCAS Google Scholar
Nijhof, J. G. et al. The cell-surface marker MTS24 identifies a novel population of follicular keratinocytes with characteristics of progenitor cells. Development133, 3027–3037 (2006). ArticleCAS Google Scholar
Jensen, U. B. et al. A distinct population of clonogenic and multipotent murine follicular keratinocytes residing in the upper isthmus. J. Cell Sci.121, 609–617 (2008). ArticleCAS Google Scholar
Horsley, V. et al. Blimp1 defines a progenitor population that governs cellular input to the sebaceous gland. Cell126, 597–609 (2006). ArticleCAS Google Scholar
Clayton, E. et al. A single type of progenitor cell maintains normal epidermis. Nature446, 185–189 (2007). ArticleCAS Google Scholar
Jensen, K. B. et al. Lrig1 expression defines a distinct multipotent stem cell population in mammalian epidermis. Cell Stem Cell4, 427–439 (2009). ArticleCAS Google Scholar
Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nature Genet.21, 70–71 (1999). ArticleCAS Google Scholar
Vasioukhin, V., Degenstein, L., Wise, B. & Fuchs, E. The magical touch: genome targeting in epidermal stem cells induced by tamoxifen application to mouse skin. Proc. Natl Acad. Sci. USA96, 8551–8556 (1999). ArticleCAS Google Scholar
Crowson, A. N. Basal cell carcinoma: biology, morphology and clinical implications. Mod. Pathol.19 Suppl 2, S127–S147 (2006). Article Google Scholar
Harfe, B. D. et al. Evidence for an expansion-based temporal Shh gradient in specifying vertebrate digit identities. Cell118, 517–528 (2004). ArticleCAS Google Scholar
St-Jacques, B. et al. Sonic hedgehog signaling is essential for hair development. Curr. Biol.8, 1058–1068 (1998). ArticleCAS Google Scholar
Means, A. L., Xu, Y., Zhao, A., Ray, K. C. & Gu, G. A CK19(CreERT) knockin mouse line allows for conditional DNA recombination in epithelial cells in multiple endodermal organs. Genesis46, 318–323 (2008). ArticleCAS Google Scholar
Potten, C. S. The epidermal proliferative unit: the possible role of the central basal cell. Cell Tissue Kinet.7, 77–88 (1974). CASPubMed Google Scholar
Ro, S. & Rannala, B. Evidence from the stop-EGFP mouse supports a niche-sharing model of epidermal proliferative units. Exp. Dermatol.14, 838–843 (2005). Article Google Scholar
Campbell, C., Quinn, A. G., Angus, B., Farr, P. M. & Rees, J. L. Wavelength specific patterns of p53 induction in human skin following exposure to UV radiation. Cancer Res.53, 2697–2699 (1993). CASPubMed Google Scholar
Vasioukhin, V., Bauer, C., Degenstein, L., Wise, B. & Fuchs, E. Hyperproliferation and defects in epithelial polarity upon conditional ablation of α-catenin in skin. Cell104, 605–17 (2001). ArticleCAS Google Scholar
Vasioukhin, V., Degenstein, L., Wise, B. & Fuchs, E. The magical touch: genome targeting in epidermal stem cells induced by tamoxifen application to mouse skin. Proc. Natl Acad. Sci. USA96, 8551–6 (1999). ArticleCAS Google Scholar
Harfe, B. D. et al. Evidence for an expansion-based temporal Shh gradient in specifying vertebrate digit identities. Cell118, 517–28 (2004). ArticleCAS Google Scholar
Morris, R. J. et al. Capturing and profiling adult hair follicle stem cells. Nature Biotechnol.22, 411–7 (2004). ArticleCAS Google Scholar
Mao, J. et al. A novel somatic mouse model to survey tumorigenic potential applied to the Hedgehog pathway. Cancer Res.66, 10171–8 (2006). ArticleCAS Google Scholar
Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nature Genet.21, 70–1 (1999). ArticleCAS Google Scholar
Means, A. L., Xu, Y., Zhao, A., Ray, K. C. & Gu, G. A CK19(CreERT) knock-in mouse line allows for conditional DNA recombination in epithelial cells in multiple endodermal organs. Genesis46, 318–23 (2008). ArticleCAS Google Scholar
Indra, A. K. et al. Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ER(T) and Cre-ER(T2) recombinases. Nucleic Acids Res.27, 4324–7 (1999). ArticleCAS Google Scholar
Liu, Y., Lyle, S., Yang, Z. & Cotsarelis, G. Keratin 15 promoter targets putative epithelial stem cells in the hair follicle bulge. J. Invest. Dermatol.121, 963–8 (2003). ArticleCAS Google Scholar
Braun, K. M. et al. Manipulation of stem cell proliferation and lineage commitment: visualisation of label-retaining cells in whole-mounts of mouse epidermis. Development130, 5241–55 (2003). ArticleCAS Google Scholar
Blanpain, C., Lowry, W. E., Geoghegan, A., Polak, L. & Fuchs, E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell118, 635–48 (2004). ArticleCAS Google Scholar