Differential regulation of E2F1 apoptotic target genes in response to DNA damage (original) (raw)

References

  1. Muller, H. & Helin, K. The E2F transcription factors: key regulators of cell proliferation. Biochim. Biophys. Acta 1470, M1–M12 (2000).
    CAS PubMed Google Scholar
  2. Phillips, A.C. & Vousden, K.H. E2F-1 induced apoptosis. Apoptosis 6, 173–182 (2001).
    Article CAS PubMed Google Scholar
  3. Muller, H. et al. E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis. Genes Dev. 15, 267–285 (2001).
    Article CAS PubMed Central PubMed Google Scholar
  4. Stanelle, J., Stiewe, T., Theseling, C.C., Peter, M. & Putzer, B.M. Gene expression changes in response to E2F1 activation. Nucleic Acids Res. 30, 1859–1867 (2002).
    Article CAS PubMed Central PubMed Google Scholar
  5. Nahle, Z. et al. Direct coupling of the cell cycle and cell death machinery by E2F. Nature Cell Biol. 4, 859–864 (2002).
    Article CAS PubMed Google Scholar
  6. Blattner, C., Sparks, A. & Lane, D. Transcription factor E2F-1 is upregulated in response to DNA damage in a manner analogous to that of p53. Mol. Cell. Biol. 19, 3704–3713 (1999).
    Article CAS PubMed Central PubMed Google Scholar
  7. Lin, W.C., Lin, F.T. & Nevins, J.R. Selective induction of E2F1 in response to DNA damage, mediated by ATM-dependent phosphorylation. Genes Dev. 15, 1833–1844 (2001).
    CAS PubMed PubMed Central Google Scholar
  8. Ishida, S. et al. Role for E2F in control of both DNA replication and mitotic functions as revealed from DNA microarray analysis. Mol. Cell. Biol. 21, 4684–4699 (2001).
    Article CAS PubMed Central PubMed Google Scholar
  9. Ren, B. et al. E2F integrates cell cycle progression with DNA repair, replication, and G2/M checkpoints. Genes Dev. 16, 245–256 (2002).
    Article CAS PubMed Central PubMed Google Scholar
  10. Wells, J., Graveel, C.R., Bartley, S.M., Madore, S.J. & Farnham, P.J. The identification of E2F1-specific target genes. Proc. Natl Acad. Sci. USA 99, 3890–3895 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  11. Bates, S. et al. p14ARF links the tumour suppressors RB and p53. Nature 395, 124–125 (1998).
    Article CAS PubMed Google Scholar
  12. Moroni, M.C. et al. Apaf-1 is a transcriptional target for E2F and p53. Nature Cell Biol. 3, 552–558 (2001).
    Article CAS PubMed Google Scholar
  13. Lissy, N.A., Davis, P.K., Irwin, M., Kaelin, W.G. & Dowdy, S.F. A common E2F-1 and p73 pathway mediates cell death induced by TCR activation. Nature 407, 642–645 (2000).
    Article CAS PubMed Google Scholar
  14. Agami, R., Blandino, G., Oren, M. & Shaul, Y. Interaction of c-Abl and p73α and their collaboration to induce apoptosis. Nature 399, 809–813 (1999).
    Article CAS PubMed Google Scholar
  15. Costanzo, A. et al. DNA damage-dependent acetylation of p73 dictates the selective activation of apoptotic target genes. Mol. Cell 9, 175–186 (2002).
    Article CAS PubMed Google Scholar
  16. Flores, E.R. et al. p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature 416, 560–564 (2002).
    Article CAS PubMed Google Scholar
  17. Gong, J.G. et al. The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage. Nature 399, 806–809 (1999).
    Article CAS PubMed Google Scholar
  18. Irwin, M. et al. Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature 407, 645–648 (2000).
    Article CAS PubMed Google Scholar
  19. Stiewe, T. & Putzer, B.M. Role of the p53-homologue p73 in E2F1-induced apoptosis. Nature Genet. 26, 464–469 (2000).
    Article CAS PubMed Google Scholar
  20. Vossio, S. et al. DN-p73 is activated after DNA damage in a p53-dependent manner to regulate p53-induced cell cycle arrest. Oncogene 21, 3796–3803 (2002).
    Article CAS PubMed Google Scholar
  21. Takahashi, Y., Rayman, J.B. & Dynlacht, B.D. Analysis of promoter binding by the E2F and pRB families in vivo: Distinct E2F proteins mediate activation and repression. Genes Dev. 14, 804–816 (2000).
    CAS PubMed PubMed Central Google Scholar
  22. Luo, R.X., Postigo, A.A. & Dean, D.C. Rb interacts with histone deacetylase to repress transcription. Cell 92, 463–473 (1998).
    Article CAS PubMed Google Scholar
  23. Martinez-Balbas, M.A., Bauer, U.M., Nielsen, S.J., Brehm, A. & Kouzarides, T. Regulation of E2F1 activity by acetylation. EMBO J. 19, 662–671 (2000).
    Article CAS PubMed Central PubMed Google Scholar
  24. Zhang, Q., Yao, H., Vo, N. & Goodman, R.H. Acetylation of adenovirus E1A regulates binding of the transcriptional corepressor CtBP. Proc. Natl Acad. Sci. USA 97, 14323–14328 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  25. Chan, H.M., Krstic-Demonacos, M., Smith, L., Demonacos, C. & La Thangue, N.B. Acetylation control of the retinoblastoma tumour-suppressor protein. Nature Cell Biol. 3, 667–674 (2001).
    Article CAS PubMed Google Scholar
  26. Chen, L.F., Mu, Y. & Green, W.C. Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-κB. EMBO J. 21, 6539–6548 (2002).
    Article CAS PubMed Central PubMed Google Scholar
  27. Sartorelli, V. et al. Acetylation of MyoD directed by PCAF is necessary for the execution of the muscle program. Mol. Cell 4, 725–734 (1999).
    Article CAS PubMed Google Scholar
  28. Trouche, D. & Kouzarides, T. E2F1 and E1A(12S) have a homologous activation domain regulated by RB and CBP. Proc. Natl Acad. Sci. USA 93, 1439–1442 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  29. Caplen, N.J., Parrish, S., Imani, F., Fire, A. & Morgan, R.A. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc. Natl Acad. Sci. USA 98, 9742–9747 (2001).
    Article CAS PubMed Central PubMed Google Scholar

Download references