Lipinski, M. M. & Jacks, T. The retinoblastoma gene family in differentiation and development. Oncogene18, 7873–7882 (1999). ArticleCASPubMed Google Scholar
Müller, H. & Helin, K. The E2F transcription factors: key regulators of cell proliferation. Biochim. Biophys. Acta1470, M1–M12 (2000). PubMed Google Scholar
Qin, X.-Q., Livingston, D. M., Kaelin, W. G. & Adams, P. Deregulated E2F1 expression leads to S-phase entry and p53-mediated apoptosis. Proc. Natl Acad. Sci. USA91, 10918–10922 (1994). ArticleCASPubMedPubMed Central Google Scholar
Kowalik, T. F., DeGregori, J., Schwarz, J. K. & Nevins, J. R. E2F1 overexpression in quiescent fibroblasts leads to induction of cellular DNA synthesis and apoptosis. J. Virol.69, 2491–2500 (1995). CASPubMedPubMed Central Google Scholar
Hsieh, J.-K., Fredersdorf, S., Kouzarides, T., Martin, K. & Lu, X. E2F1-induced apoptosis requires DNA binding but not transactivation and is inhibited by the retinoblastoma protein through direct interaction. Genes Dev.11, 1840–1852 (1997). ArticleCASPubMed Google Scholar
Nip, J. et al. E2F-1 cooperates with topoisomerase II inhibition and DNA damage to selectively augment p53-independent apoptosis. Mol. Cell. Biol.17, 1049–1056 (1997). ArticleCASPubMedPubMed Central Google Scholar
Phillips, A. C., Bates, S., Ryan, K. M., Helin, K. & Vousden, K. Induction of DNA synthesis and apoptosis are separable functions of E2F-1. Genes Dev.11, 1853–1863 (1997). ArticleCASPubMed Google Scholar
Holmberg, C., Helin, K., Sehested, M. & Karlström, O. E2F-1 induced p53-independent apoptosis in transgenic mice. Oncogene17, 143–155 (1998). ArticleCASPubMed Google Scholar
Vigo, E. et al. CDC25A phosphatase is a target of E2F and is required for efficient E2F-1 induced S phase. Mol. Cell. Biol.19, 6379–6395 (1999). ArticleCASPubMedPubMed Central Google Scholar
Irwin, M. et al. Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature407, 645–648 (2000). ArticleCASPubMed Google Scholar
Lissy, N. A., Davis, P. K., Irwin, M., Kaelin W. G., Jr & Dowdy, S. F. A common E2F-1 and p73 pathway mediates cell death induced by TCR activation. Nature407, 642–645 (2000). ArticleCASPubMed Google Scholar
Tsai, K. Y. et al. Mutation of E2F1 supresses apoptosis and inappropriate S-phase entry and extends survival of Rb-deficient mouse embryos. Mol. Cell2, 293–304 (1998). ArticleCASPubMed Google Scholar
Jost, C. A., Marin, M. C. & Kaelin, W. G. p73 is a human p53-related protein that can induce apoptosis. Nature389, 191–194 (1997). ArticleCASPubMed Google Scholar
Kessis, T. D. et al. Human papillomavirus 16 E6 expression disrupts the p53-mediated cellular response to DNA damage. Proc. Natl Acad. Sci. USA90, 3988–3992 (1993). ArticleCASPubMedPubMed Central Google Scholar
Cecconi, F., Alvarez-Bolado, G., Meyer, B. M., Roth, K. A. & Gruss, P. Apaf-1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell94, 727–737 (1998). ArticleCASPubMed Google Scholar
Yoshida, H. et al. Apaf-1 is required for mitochondrial pathways of apoptosis and brain development. Cell94, 739–750 (1998). ArticleCASPubMed Google Scholar
Soengas, M. S. et al. Apaf-1 and Caspase-9 in p53-dependent apoptosis and tumor inhibition. Science284, 156–159 (1999). ArticleCASPubMed Google Scholar
Macleod, K. F., Hu, Y. & Jacks, T. Loss of Rb activates both p53-dependent and independent cell death pathways in the developing mouse nervous system. EMBO J.15, 6178–6188 (1996). ArticleCASPubMedPubMed Central Google Scholar
Hausmann, G. et al. Pro-apoptotic apoptosis protease-activating factor 1 (Apaf-1) has a cytoplasmic localization distinct from Bcl-2 or BclXl. J. Cell Biol.149, 623–633 (2000). ArticleCASPubMedPubMed Central Google Scholar
Perkins, C., Kim, C. N., Fang, G. & Bhalla, K. N. Overexpression of Apaf-1 promotes apoptosis of untreated and paclitaxel- or etoposide-treated HL-60 cells. Cancer Res.58, 4561–4566 (1998). CASPubMed Google Scholar
Phillips, A. C., Ernst, M. K., Bates, S., Rice, N. R. & Vousden, K. H. E2F-1 potentiates cell death by blocking antiapoptotic signaling pathways. Mol. Cell4, 771–781 (1999). ArticleCASPubMed Google Scholar
Zhang, H. S., Postigo, A. A. & Dean, D. C. Active transcriptional repression by Rb-E2F complex mediates G1 arrest triggered by p16INK4A, TGFβ and contact inhibition. Cell97, 53–61 (1999). ArticleCASPubMed Google Scholar
Lasorella, A., Noseda, M., Beyna, M., Yokota, Y. & Iavarone, A. Id2 is a retinoblastoma protein target and mediates signalling by Myc oncoproteins. Nature407, 592–598 (2000). ArticleCASPubMed Google Scholar
Soengas, M. S. et al. Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature409, 207–211 (2001). ArticleCASPubMed Google Scholar
Zhou, L., Song, Z., Tittel, J. & Steller, H. HAC-1, a Drosophila homolog of APAF-1 and CED-4, functions in developmental- and radiation-induced apoptosis. Mol. Cell4, 745–755 (1999). ArticleCASPubMed Google Scholar
Ohtani, K., DeGregori, J. & Nevins, J. R. Regulation of the cyclin E gene by transcription factor E2F1. Proc. Natl Acad. Sci. USA92, 12146–12150 (1995). ArticleCASPubMedPubMed Central Google Scholar
Goldstein, J. C., Waterhouse, N. J., Juin, P., Evan, G. I. & Green, D. R. The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nature Cell Biol.2, 156–162 (2000). ArticleCASPubMed Google Scholar
Pelton, R. W., Dickinson, M. E., Moses, H. L. & Hogan, B. L. In situ hybridization analysis of TGF-β3 expression during mouse development: comparative studies with TGF-β1 and -β2. Development110, 600–620 (1990). Google Scholar