Apaf-1 is a transcriptional target for E2F and p53 (original) (raw)

References

  1. Sherr, C. J. Cancer cell cycles. Science 274, 1672–1677 (1996).
    Article CAS PubMed Google Scholar
  2. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).
    Article CAS PubMed Google Scholar
  3. Lipinski, M. M. & Jacks, T. The retinoblastoma gene family in differentiation and development. Oncogene 18, 7873–7882 (1999).
    Article CAS PubMed Google Scholar
  4. Dyson, N. The regulation of E2F by pRB-family proteins. Genes Dev. 12, 2245–2262 (1998).
    Article CAS PubMed Google Scholar
  5. Müller, H. & Helin, K. The E2F transcription factors: key regulators of cell proliferation. Biochim. Biophys. Acta 1470, M1–M12 (2000).
    PubMed Google Scholar
  6. Wu, X. & Levine, A. J. p53 and E2F-1 cooperate to mediate apoptosis. Proc. Natl Acad. Sci. USA 91, 3602–3606 (1994).
    Article CAS PubMed PubMed Central Google Scholar
  7. Qin, X.-Q., Livingston, D. M., Kaelin, W. G. & Adams, P. Deregulated E2F1 expression leads to S-phase entry and p53-mediated apoptosis. Proc. Natl Acad. Sci. USA 91, 10918–10922 (1994).
    Article CAS PubMed PubMed Central Google Scholar
  8. Kowalik, T. F., DeGregori, J., Schwarz, J. K. & Nevins, J. R. E2F1 overexpression in quiescent fibroblasts leads to induction of cellular DNA synthesis and apoptosis. J. Virol. 69, 2491–2500 (1995).
    CAS PubMed PubMed Central Google Scholar
  9. Hsieh, J.-K., Fredersdorf, S., Kouzarides, T., Martin, K. & Lu, X. E2F1-induced apoptosis requires DNA binding but not transactivation and is inhibited by the retinoblastoma protein through direct interaction. Genes Dev. 11, 1840–1852 (1997).
    Article CAS PubMed Google Scholar
  10. Nip, J. et al. E2F-1 cooperates with topoisomerase II inhibition and DNA damage to selectively augment p53-independent apoptosis. Mol. Cell. Biol. 17, 1049–1056 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  11. Phillips, A. C., Bates, S., Ryan, K. M., Helin, K. & Vousden, K. Induction of DNA synthesis and apoptosis are separable functions of E2F-1. Genes Dev. 11, 1853–1863 (1997).
    Article CAS PubMed Google Scholar
  12. Holmberg, C., Helin, K., Sehested, M. & Karlström, O. E2F-1 induced p53-independent apoptosis in transgenic mice. Oncogene 17, 143–155 (1998).
    Article CAS PubMed Google Scholar
  13. Vigo, E. et al. CDC25A phosphatase is a target of E2F and is required for efficient E2F-1 induced S phase. Mol. Cell. Biol. 19, 6379–6395 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  14. Irwin, M. et al. Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature 407, 645–648 (2000).
    Article CAS PubMed Google Scholar
  15. Lissy, N. A., Davis, P. K., Irwin, M., Kaelin W. G., Jr & Dowdy, S. F. A common E2F-1 and p73 pathway mediates cell death induced by TCR activation. Nature 407, 642–645 (2000).
    Article CAS PubMed Google Scholar
  16. Tsai, K. Y. et al. Mutation of E2F1 supresses apoptosis and inappropriate S-phase entry and extends survival of Rb-deficient mouse embryos. Mol. Cell 2, 293–304 (1998).
    Article CAS PubMed Google Scholar
  17. Bates, S. et al. p14ARF links the tumour suppressors RB and p53. Nature 395, 124–125 (1998).
    Article CAS PubMed Google Scholar
  18. Sherr, C. J. Tumor surveillance via ARF-p53 pathway. Genes Dev. 12, 2984–2991 (1998).
    Article CAS PubMed Google Scholar
  19. Jost, C. A., Marin, M. C. & Kaelin, W. G. p73 is a human p53-related protein that can induce apoptosis. Nature 389, 191–194 (1997).
    Article CAS PubMed Google Scholar
  20. Kessis, T. D. et al. Human papillomavirus 16 E6 expression disrupts the p53-mediated cellular response to DNA damage. Proc. Natl Acad. Sci. USA 90, 3988–3992 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  21. Hengartner, M. O. The biochemistry of apoptosis. Nature 407, 770–776 (2000).
    Article CAS PubMed Google Scholar
  22. Cecconi, F., Alvarez-Bolado, G., Meyer, B. M., Roth, K. A. & Gruss, P. Apaf-1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell 94, 727–737 (1998).
    Article CAS PubMed Google Scholar
  23. Yoshida, H. et al. Apaf-1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94, 739–750 (1998).
    Article CAS PubMed Google Scholar
  24. Soengas, M. S. et al. Apaf-1 and Caspase-9 in p53-dependent apoptosis and tumor inhibition. Science 284, 156–159 (1999).
    Article CAS PubMed Google Scholar
  25. Macleod, K. F., Hu, Y. & Jacks, T. Loss of Rb activates both p53-dependent and independent cell death pathways in the developing mouse nervous system. EMBO J. 15, 6178–6188 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  26. Rodriguez, J. & Lazebnik, Y. Caspase-9 and APAF-1 form an active holoenzyme. Genes Dev. 13, 3179–3184 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  27. Hausmann, G. et al. Pro-apoptotic apoptosis protease-activating factor 1 (Apaf-1) has a cytoplasmic localization distinct from Bcl-2 or BclXl. J. Cell Biol. 149, 623–633 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  28. Perkins, C., Kim, C. N., Fang, G. & Bhalla, K. N. Overexpression of Apaf-1 promotes apoptosis of untreated and paclitaxel- or etoposide-treated HL-60 cells. Cancer Res. 58, 4561–4566 (1998).
    CAS PubMed Google Scholar
  29. Evan, G. & Littlewood, T. A matter of life or cell death. Science 281, 1317–1322 (1998).
    Article CAS PubMed Google Scholar
  30. Phillips, A. C., Ernst, M. K., Bates, S., Rice, N. R. & Vousden, K. H. E2F-1 potentiates cell death by blocking antiapoptotic signaling pathways. Mol. Cell 4, 771–781 (1999).
    Article CAS PubMed Google Scholar
  31. Zhang, H. S., Postigo, A. A. & Dean, D. C. Active transcriptional repression by Rb-E2F complex mediates G1 arrest triggered by p16INK4A, TGFβ and contact inhibition. Cell 97, 53–61 (1999).
    Article CAS PubMed Google Scholar
  32. Lasorella, A., Noseda, M., Beyna, M., Yokota, Y. & Iavarone, A. Id2 is a retinoblastoma protein target and mediates signalling by Myc oncoproteins. Nature 407, 592–598 (2000).
    Article CAS PubMed Google Scholar
  33. Soengas, M. S. et al. Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 409, 207–211 (2001).
    Article CAS PubMed Google Scholar
  34. Zhou, L., Song, Z., Tittel, J. & Steller, H. HAC-1, a Drosophila homolog of APAF-1 and CED-4, functions in developmental- and radiation-induced apoptosis. Mol. Cell 4, 745–755 (1999).
    Article CAS PubMed Google Scholar
  35. Ohtani, K., DeGregori, J. & Nevins, J. R. Regulation of the cyclin E gene by transcription factor E2F1. Proc. Natl Acad. Sci. USA 92, 12146–12150 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  36. Fearnhead, H. O. et al. Oncogene-dependent apoptosis is mediated by caspase-9. Proc. Natl Acad. Sci. USA 95, 13664–13669 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  37. Goldstein, J. C., Waterhouse, N. J., Juin, P., Evan, G. I. & Green, D. R. The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nature Cell Biol. 2, 156–162 (2000).
    Article CAS PubMed Google Scholar
  38. Pelton, R. W., Dickinson, M. E., Moses, H. L. & Hogan, B. L. In situ hybridization analysis of TGF-β3 expression during mouse development: comparative studies with TGF-β1 and -β2. Development 110, 600–620 (1990).
    Google Scholar

Download references