Hille, B. Ion channels of Excitable Membranes (Sinauer Associates, Sunderland, Massachusetts, 2001). Google Scholar
MacKinnon, R. Potassium channels and the atomic basis of selective ion conduction (Nobel Lecture). Angew. Chem. Int. Edn Engl.43, 4265–4277 (2004). ArticleCAS Google Scholar
Cosens, D.J. & Manning, A. Abnormal electroretinogram from a Drosophila mutant. Nature224, 285–287 (1969). ArticleCASPubMed Google Scholar
Montell, C. & Rubin, G.M. Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron2, 1313–1323 (1989). ArticleCASPubMed Google Scholar
Hardie, R.C. & Minke, B. The trp gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors. Neuron8, 643–651 (1992). ArticleCASPubMed Google Scholar
Phillips, A.M., Bull, A. & Kelly, L.E. Identification of a Drosophila gene encoding a calmodulin-binding protein with homology to the trp phototransduction gene. Neuron8, 631–642 (1992). ArticleCASPubMed Google Scholar
Xu, X.Z., Chien, F., Butler, A., Salkoff, L. & Montell, C. TRPgamma, a Drosophila TRP-related subunit, forms a regulated cation channel with TRPL. Neuron26, 647–657 (2000). ArticleCASPubMed Google Scholar
Reuss, H., Mojet, M.H., Chyb, S. & Hardie, R.C. In vivo analysis of the Drosophila light-sensitive channels, TRP and TRPL. Neuron19, 1249–1259 (1997). ArticleCASPubMed Google Scholar
Chyb, S., Raghu, P. & Hardie, R.C. Polyunsaturated fatty acids activate the Drosophila light-sensitive channels TRP and TRPL. Nature397, 255–259 (1999). ArticleCASPubMed Google Scholar
Petersen, C.C., Berridge, M.J., Borgese, M.F. & Bennett, D.L. Putative capacitative calcium entry channels: expression of Drosophila trp and evidence for the existence of vertebrate homologues. Biochem. J.311, 41–44 (1995). ArticleCASPubMedPubMed Central Google Scholar
Yellen, G. The voltage-gated potassium channels and their relatives. Nature419, 35–42 (2002). ArticleCASPubMed Google Scholar
Hoenderop, J.G. et al. Homo- and heterotetrameric architecture of the epithelial Ca2+ channels, TRPV5 and TRPV6. EMBO J.22, 776–785 (2003). ArticleCASPubMedPubMed Central Google Scholar
Voets, T., Janssens, A., Droogmans, G. & Nilius, B. Outer pore architecture of a Ca2+-selective TRP channel. J. Biol. Chem.279, 15223–15230 (2004). ArticleCASPubMed Google Scholar
Fleig, A. & Penner, R. The TRPM ion channel subfamily: molecular, biophysical and functional features. Trends Pharmacol. Sci.25, 633–639 (2004). ArticleCASPubMed Google Scholar
Birnbaumer, L. et al. On the molecular basis and regulation of cellular capacitative calcium entry: roles for Trp proteins. Proc. Natl. Acad. Sci. USA93, 15195–15202 (1996). ArticleCASPubMedPubMed Central Google Scholar
Zhu, X. et al. trp, a novel mammalian gene family essential for agonist-activated capacitative Ca2+ entry. Cell85, 661–671 (1996). ArticleCASPubMed Google Scholar
Zitt, C. et al. Cloning and functional expression of a human Ca2+-permeable cation channel activated by calcium store depletion. Neuron16, 1189–1196 (1996). ArticleCASPubMed Google Scholar
Caterina, M.J. et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature389, 816–824 (1997). ArticleCASPubMed Google Scholar
Montell, C. et al. A unified nomenclature for the superfamily of TRP cation channels. Mol. Cell9, 229–231 (2002). ArticleCASPubMed Google Scholar
Patapoutian, A., Peier, A.M., Story, G.M. & Viswanath, V. ThermoTRP channels and beyond: mechanisms of temperature sensation. Nat. Rev. Neurosci.4, 529–539 (2003). ArticleCASPubMed Google Scholar
Caterina, M.J., Rosen, T.A., Tominaga, M., Brake, A.J. & Julius, D. A capsaicin-receptor homologue with a high threshold for noxious heat. Nature398, 436–441 (1999). ArticleCASPubMed Google Scholar
Xu, H. et al. TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature418, 181–186 (2002). ArticleCASPubMed Google Scholar
Peier, A.M. et al. A heat-sensitive TRP channel expressed in keratinocytes. Science296, 2046–2049 (2002). ArticleCASPubMed Google Scholar
Smith, G.D. et al. TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature418, 186–190 (2002). ArticleCASPubMed Google Scholar
Watanabe, H. et al. Heat-evoked activation of TRPV4 channels in a HEK293 cell expression system and in native mouse aorta endothelial cells. J. Biol. Chem.277, 47044–47051 (2002). ArticleCASPubMed Google Scholar
McKemy, D.D., Neuhäusser, W.M. & Julius, D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature416, 52–58 (2002). ArticleCASPubMed Google Scholar
Peier, A.M. et al. A TRP channel that senses cold stimuli and menthol. Cell108, 705–715 (2002). ArticleCASPubMed Google Scholar
Story, G.M. et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell112, 819–829 (2003). ArticleCASPubMed Google Scholar
Jordt, S.E. et al. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature427, 260–265 (2004). ArticleCASPubMed Google Scholar
Prescott, E.D. & Julius, D. A modular PIP2 binding site as a determinant of capsaicin receptor sensitivity. Science300, 1284–1288 (2003). ArticleCASPubMed Google Scholar
Chuang, H.H. et al. Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature411, 957–962 (2001). ArticleCASPubMed Google Scholar
Liu, B. & Qin, F. Functional control of cold- and menthol-sensitive TRPM8 ion channels by phosphatidylinositol 4,5-bisphosphate. J. Neurosci.25, 1674–1681 (2005). ArticleCASPubMedPubMed Central Google Scholar
Rohacs, T., Lopes, C.M., Michailidis, I. & Logothetis, D.E. PI(4,5)P(2) regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat. Neurosci.8, 626–634 (2005). ArticleCASPubMed Google Scholar
Voets, T. et al. The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature430, 748–754 (2004). ArticleCASPubMed Google Scholar
Brauchi, S., Orio, P. & Latorre, R. Clues to understanding cold sensation: thermodynamics and electrophysiological analysis of the cold receptor TRPM8. Proc. Natl. Acad. Sci. USA101, 15494–15499 (2004). ArticleCASPubMedPubMed Central Google Scholar
Caterina, M.J. et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science288, 306–313 (2000). ArticleCASPubMed Google Scholar
Davis, J.B. et al. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature405, 183–187 (2000). ArticleCASPubMed Google Scholar
Moqrich, A. et al. Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science307, 1468–1472 (2005). ArticleCASPubMed Google Scholar
Lee, H., Iida, T., Mizuno, A., Suzuki, M. & Caterina, M.J. Altered thermal selection behavior in mice lacking transient receptor potential vanilloid 4. J. Neurosci.25, 1304–1310 (2005). ArticleCASPubMedPubMed Central Google Scholar
Tracey, W.D., Jr, Wilson, R.I., Laurent, G. & Benzer, S. painless, a Drosophila gene essential for nociception. Cell113, 261–273 (2003). ArticleCASPubMed Google Scholar
Lee, Y. et al. Pyrexia is a new thermal transient receptor potential channel endowing tolerance to high temperatures in Drosophila melanogaster. Nat. Genet.37, 305–310 (2005). ArticleCASPubMed Google Scholar
Viswanath, V. et al. Opposite thermosensor in fruitfly and mouse. Nature423, 822–823 (2003). ArticleCASPubMed Google Scholar
Bandell, M. et al. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron41, 849–857 (2004). ArticleCASPubMed Google Scholar
Szallasi, A., Blumberg, P.M., Annicelli, L.L., Krause, J.E. & Cortright, D.N. The cloned rat vanilloid receptor VR1 mediates both R-type binding and C-type calcium response in dorsal root ganglion neurons. Mol. Pharmacol.56, 581–587 (1999). ArticleCASPubMed Google Scholar
McNamara, F.N., Randall, A. & Gunthorpe, M.J. Effects of piperine, the pungent component of black pepper, at the human vanilloid receptor (TRPV1). Br. J. Pharmacol.144, 781–790 (2005). ArticleCASPubMedPubMed Central Google Scholar
Macpherson, L. et al. The pungency of garlic: activation of TRPA1 and TRPV1 in response to allicin. Curr. Biol.15, 929–934 (2005). ArticleCASPubMed Google Scholar
Watanabe, H. et al. Activation of TRPV4 channels (hVRL-2/mTRP12) by phorbol derivatives. J. Biol. Chem.277, 13569–13577 (2002). ArticleCASPubMed Google Scholar
Chuang, H.H., Neuhausser, W.M. & Julius, D. The super-cooling agent icilin reveals a mechanism of coincidence detection by a temperature-sensitive TRP channel. Neuron43, 859–869 (2004). ArticleCASPubMed Google Scholar
Zygmunt, P.M. et al. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature400, 452–457 (1999). ArticleCASPubMed Google Scholar
Hwang, S.W. et al. Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances. Proc. Natl. Acad. Sci. USA97, 6155–6160 (2000). ArticleCASPubMedPubMed Central Google Scholar
Watanabe, H. et al. Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature424, 434–438 (2003). ArticleCASPubMed Google Scholar
Jordt, S.E. & Julius, D. Molecular basis for species-specific sensitivity to “hot” chili peppers. Cell108, 421–430 (2002). ArticleCASPubMed Google Scholar
Jung, J. et al. Agonist recognition sites in the cytosolic tails of vanilloid receptor 1. J. Biol. Chem.277, 44448–44454 (2002). ArticleCASPubMed Google Scholar
Vriens, J. et al. Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc. Natl. Acad. Sci. USA101, 396–401 (2004). ArticleCASPubMed Google Scholar
Colbert, H.A., Smith, T.L. & Bargmann, C.I. OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans. J. Neurosci.17, 8259–8269 (1997). ArticleCASPubMedPubMed Central Google Scholar
Liedtke, W. et al. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell103, 525–535 (2000). ArticleCASPubMedPubMed Central Google Scholar
Strotmann, R., Harteneck, C., Nunnenmacher, K., Schultz, G. & Plant, T.D. OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat. Cell Biol.2, 695–702 (2000). ArticleCASPubMed Google Scholar
Wissenbach, U., Bodding, M., Freichel, M. & Flockerzi, V. Trp12, a novel Trp related protein from kidney. FEBS Lett.485, 127–134 (2000). ArticleCASPubMed Google Scholar
Suzuki, M., Mizuno, A., Kodaira, K. & Imai, M. Impaired pressure sensation in mice lacking TRPV4. J. Biol. Chem.278, 22664–22668 (2003). ArticleCASPubMed Google Scholar
Mizuno, A., Matsumoto, N., Imai, M. & Suzuki, M. Impaired osmotic sensation in mice lacking TRPV4. Am J. Physiol. Cell Physiol.285, C96–101 (2003). ArticleCASPubMed Google Scholar
Liedtke, W., Tobin, D.M., Bargmann, C.I. & Friedman, J.M. Mammalian TRPV4 (VR-OAC) directs behavioral responses to osmotic and mechanical stimuli in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA100, 14531–14536 (2003). ArticleCASPubMedPubMed Central Google Scholar
Muraki, K. et al. TRPV2 is a component of osmotically sensitive cation channels in murine aortic myocytes. Circ. Res.93, 829–838 (2003). ArticleCASPubMed Google Scholar
Grimm, C., Kraft, R., Sauerbruch, S., Schultz, G. & Harteneck, C. Molecular and functional characterization of the melastatin-related cation channel TRPM3. J. Biol. Chem.278, 21493–21501 (2003). ArticleCASPubMed Google Scholar
Kim, J. et al. A TRPV family ion channel required for hearing in Drosophila. Nature424, 81–84 (2003). ArticleCASPubMed Google Scholar
Maroto, R. et al. TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat. Cell Biol.7, 179–185 (2005). ArticleCASPubMed Google Scholar
Walker, R.G., Willingham, A.T. & Zuker, C.S. A Drosophila mechanosensory transduction channel. Science287, 2229–2234 (2000). ArticleCASPubMed Google Scholar
Sidi, S., Friedrich, R.W. & Nicolson, T. NompC TRP channel required for vertebrate sensory hair cell mechanotransduction. Science301, 96–99 (2003). ArticleCASPubMed Google Scholar
Nauli, S.M. et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat. Genet.33, 129–137 (2003). ArticleCASPubMed Google Scholar
Koulen, P. et al. Polycystin-2 is an intracellular calcium release channel. Nat. Cell Biol.4, 191–197 (2002). ArticleCASPubMed Google Scholar
Corey, D.P. et al. TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature432, 723–730 (2004). ArticleCASPubMed Google Scholar
Perozo, E., Cortes, D.M., Sompornpisut, P., Kloda, A. & Martinac, B. Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature418, 942–948 (2002). ArticleCASPubMed Google Scholar
Sotomayor, M., Corey, D.P. & Schulten, K. In search of the hair-cell gating spring elastic properties of ankyrin and cadherin repeats. Structure13, 669–682 (2005). ArticleCASPubMed Google Scholar
Howard, J. & Bechstedt, S. Hypothesis: a helix of ankyrin repeats of the NOMPC-TRP ion channel is the gating spring of mechanoreceptors. Curr. Biol.14, R224–R226 (2004). ArticleCASPubMed Google Scholar