- Khan, I., Malinge, S. & Crispino, J. Myeloid leukemia in Down syndrome. Crit. Rev. Oncog. 16, 25–36 (2011).
Article PubMed PubMed Central Google Scholar
- Massey, G.V. et al. A prospective study of the natural history of transient leukemia (TL) in neonates with Down syndrome (DS): Children's Oncology Group (COG) study POG-9481. Blood 107, 4606–4613 (2006).
Article CAS PubMed Google Scholar
- Muramatsu, H. et al. Risk factors for early death in neonates with Down syndrome and transient leukaemia. Br. J. Haematol. 142, 610–615 (2008).
Article PubMed Google Scholar
- Klusmann, J.H. et al. Treatment and prognostic impact of transient leukemia in neonates with Down syndrome. Blood 111, 2991–2998 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Xu, G. et al. Frequent mutations in the GATA-1 gene in the transient myeloproliferative disorder of Down syndrome. Blood 102, 2960–2968 (2003).
Article CAS PubMed Google Scholar
- Wechsler, J. et al. Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nat. Genet. 32, 148–152 (2002).
Article CAS PubMed Google Scholar
- Walters, D.K. et al. Activating alleles of JAK3 in acute megakaryoblastic leukemia. Cancer Cell 10, 65–75 (2006).
Article CAS PubMed Google Scholar
- Malinge, S. et al. Activating mutations in human acute megakaryoblastic leukemia. Blood 112, 4220–4226 (2008).
Article CAS PubMed Google Scholar
- Blink, M. et al. Frequency and prognostic implications of JAK 1_–_3 aberrations in Down syndrome acute lymphoblastic and myeloid leukemia. Leukemia 25, 1365–1368 (2011).
Article CAS PubMed Google Scholar
- Hama, A. et al. Molecular lesions in childhood and adult acute megakaryoblastic leukaemia. Br. J. Haematol. 156, 316–325 (2012).
Article CAS PubMed Google Scholar
- Malkin, D., Brown, E.J. & Zipursky, A. The role of p53 in megakaryocyte differentiation and the megakaryocytic leukemias of Down syndrome. Cancer Genet. Cytogenet. 116, 1–5 (2000).
Article CAS PubMed Google Scholar
- Hussein, K. et al. MPLW515L mutation in acute megakaryoblastic leukaemia. Leukemia 23, 852–855 (2009).
Article CAS PubMed Google Scholar
- Greenman, C. et al. Patterns of somatic mutation in human cancer genomes. Nature 446, 153–158 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Welch, J.S. et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 150, 264–278 (2012).
CAS PubMed PubMed Central Google Scholar
- Ding, L. et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481, 506–510 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Creutzig, U. et al. Diagnosis and management of acute myeloid leukemia in children and adolescents: recommendations from an international expert panel. Blood 120, 3187–3205 (2012).
Article CAS PubMed Google Scholar
- Swerdlow, S.H., Jaffe, E.S. & International Agency for Research on Cancer & World Health Organization WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (International Agency for Research on Cancer, Lyon, France, 2008).
- Wu, C. et al. BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol. 10, R130 (2009).
Article PubMed PubMed Central CAS Google Scholar
- Bourquin, J.P. et al. Identification of distinct molecular phenotypes in acute megakaryoblastic leukemia by gene expression profiling. Proc. Natl. Acad. Sci. USA 103, 3339–3344 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Mercher, T. et al. Involvement of a human gene related to the Drosophila spen gene in the recurrent t(1;22) translocation of acute megakaryocytic leukemia. Proc. Natl. Acad. Sci. USA 98, 5776–5779 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Ma, Z. et al. Fusion of two novel genes, RBM15 and MKL1, in the t(1;22)(p13;q13) of acute megakaryoblastic leukemia. Nat. Genet. 28, 220–221 (2001).
Article CAS PubMed Google Scholar
- Gruber, T.A. et al. An inv(16)(p13.3q24.3)-encoded CBFA2T3-GLIS2 fusion protein defines an aggressive subtype of pediatric acute megakaryoblastic leukemia. Cancer Cell 22, 683–697 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Thiollier, C. et al. Characterization of novel genomic alterations and therapeutic approaches using acute megakaryoblastic leukemia xenograft models. J. Exp. Med. 209, 2017–2031 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Gruber, S., Haering, C.H. & Nasmyth, K. Chromosomal cohesin forms a ring. Cell 112, 765–777 (2003).
Article CAS PubMed Google Scholar
- Nasmyth, K. & Haering, C.H. Cohesin: its roles and mechanisms. Annu. Rev. Genet. 43, 525–558 (2009).
Article CAS PubMed Google Scholar
- Wendt, K.S. et al. Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451, 796–801 (2008).
Article CAS PubMed Google Scholar
- Ström, L. et al. Postreplicative formation of cohesion is required for repair and induced by a single DNA break. Science 317, 242–245 (2007).
Article PubMed CAS Google Scholar
- Watrin, E. & Peters, J.M. The cohesin complex is required for the DNA damage–induced G2/M checkpoint in mammalian cells. EMBO J. 28, 2625–2635 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Dorsett, D. et al. Effects of sister chromatid cohesion proteins on cut gene expression during wing development in Drosophila. Development 132, 4743–4753 (2005).
Article CAS PubMed Google Scholar
- Parelho, V. et al. Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell 132, 422–433 (2008).
Article CAS PubMed Google Scholar
- Solomon, D.A. et al. Mutational inactivation of STAG2 causes aneuploidy in human cancer. Science 333, 1039–1043 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Forestier, E. et al. Cytogenetic features of acute lymphoblastic and myeloid leukemias in pediatric patients with Down syndrome: an iBFM-SG study. Blood 111, 1575–1583 (2008).
Article CAS PubMed Google Scholar
- Rubio, E.D. et al. CTCF physically links cohesin to chromatin. Proc. Natl. Acad. Sci. USA 105, 8309–8314 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Stedman, W. et al. Cohesins localize with CTCF at the KSHV latency control region and at cellular c-myc and H19/Igf2 insulators. EMBO J. 27, 654–666 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Ohlsson, R., Bartkuhn, M. & Renkawitz, R. CTCF shapes chromatin by multiple mechanisms: the impact of 20 years of CTCF research on understanding the workings of chromatin. Chromosoma 119, 351–360 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Phillips, J.E. & Corces, V.G. CTCF: master weaver of the genome. Cell 137, 1194–1211 (2009).
Article PubMed PubMed Central Google Scholar
- Wendt, K.S. & Peters, J.M. How cohesin and CTCF cooperate in regulating gene expression. Chromosome Res. 17, 201–214 (2009).
Article CAS PubMed Google Scholar
- Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).
- Cao, R. et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298, 1039–1043 (2002).
Article CAS PubMed Google Scholar
- Ernst, T. et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat. Genet. 42, 722–726 (2010).
Article CAS PubMed Google Scholar
- Patel, J.P. et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N. Engl. J. Med. 366, 1079–1089 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Koolen, D.A. et al. Mutations in the chromatin modifier gene KANSL1 cause the 17q21.31 microdeletion syndrome. Nat. Genet. 44, 639–641 (2012).
Article CAS PubMed Google Scholar
- Zollino, M. et al. Mutations in KANSL1 cause the 17q21.31 microdeletion syndrome phenotype. Nat. Genet. 44, 636–638 (2012).
Article CAS PubMed Google Scholar
- Yang, X.J. The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Res. 32, 959–976 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Li, X., Wu, L., Corsa, C.A., Kunkel, S. & Dou, Y. Two mammalian MOF complexes regulate transcription activation by distinct mechanisms. Mol. Cell 36, 290–301 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Bercovich, D. et al. Mutations of JAK2 in acute lymphoblastic leukaemias associated with Down's syndrome. Lancet 372, 1484–1492 (2008).
Article CAS PubMed Google Scholar
- Mullighan, C.G. et al. JAK mutations in high-risk childhood acute lymphoblastic leukemia. Proc. Natl. Acad. Sci. USA 106, 9414–9418 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Kratz, C.P. et al. Mutational screen reveals a novel JAK2 mutation, L611S, in a child with acute lymphoblastic leukemia. Leukemia 20, 381–383 (2006).
Article CAS PubMed Google Scholar
- Nussenzveig, R.H. et al. Detection of JAK2 mutations in paraffin marrow biopsies by high resolution melting analysis: identification of L611S alone and in cis with V617F in polycythemia vera. Leuk. Lymphoma 53, 2479–2486 (2012).
Article CAS PubMed Google Scholar
- Miyata, Y. & Nishida, E. DYRK1A binds to an evolutionarily conserved WD40-repeat protein WDR68 and induces its nuclear translocation. Biochim. Biophys. Acta 1813, 1728–1739 (2011).
Article CAS PubMed Google Scholar
- de Rooij, J.D. et al. NUP98/JARID1A is a novel recurrent abnormality in pediatric acute megakaryoblastic leukemia with a distinct HOX gene expression pattern. Leukemia doi:10.1038/leu.2013.87 (27 March 2013).10.1038/leu.2013.87
Article CAS PubMed Google Scholar
- Nikolaev, S.I. et al. Exome sequencing identifies putative drivers of progression of transient myeloproliferative disorder to AMKL in infants with Down Syndrome. Blood 122, 554–561 (2013).
Article CAS PubMed Google Scholar
- Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Sato, Y. et al. Integrated molecular analysis of clear-cell renal cell carcinoma. Nat. Genet. 45, 860–867 (2013).
Article CAS PubMed Google Scholar
- Yoshida, K. et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478, 64–69 (2011).
Article CAS PubMed Google Scholar
- Kent, W.J. BLAT—the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).
CAS PubMed PubMed Central Google Scholar
- Shiraishi, Y. et al. An empirical Bayesian framework for somatic mutation detection from cancer genome sequencing data. Nucleic Acids Res. 41, e89 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Sakaguchi, H. et al. Exome sequencing identifies secondary mutations of SETBP1 and JAK3 in juvenile myelomonocytic leukemia. Nat. Genet. 45, 937–941 (2013).
CAS PubMed Google Scholar
- Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
PubMed PubMed Central Google Scholar
- Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).
Article PubMed PubMed Central CAS Google Scholar
- Forbes, S.A. et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 39, D945–D950 (2011).
Article CAS PubMed Google Scholar
- Robinson, J.T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).
CAS PubMed PubMed Central Google Scholar
- Torres, L. et al. Acute megakaryoblastic leukemia with a four-way variant translocation originating the _RBM15_-MKL1 fusion gene. Pediatr. Blood Cancer 56, 846–849 (2011).
Article PubMed Google Scholar
- Nannya, Y. et al. A robust algorithm for copy number detection using high-density oligonucleotide single nucleotide polymorphism genotyping arrays. Cancer Res. 65, 6071–6079 (2005).
Article CAS PubMed Google Scholar
- Yamamoto, G. et al. Highly sensitive method for genomewide detection of allelic composition in nonpaired, primary tumor specimens by use of Affymetrix single-nucleotide-polymorphism genotyping microarrays. Am. J. Hum. Genet. 81, 114–126 (2007).
Article CAS PubMed PubMed Central Google Scholar