Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms (original) (raw)

References

  1. Roth, G.A. et al. Demographic and epidemiologic drivers of global cardiovascular mortality. N. Engl. J. Med. 372, 1333–1341 (2015).
    Article CAS PubMed PubMed Central Google Scholar
  2. GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age–sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 385, 117–171 (2015).
  3. CARDIoGRAMplusC4D Consortium. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat. Genet. 45, 25–33 (2013).
  4. Myocardial Infarction Genetics Consortium. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat. Genet. 41, 334–341 (2009).
  5. IBC 50K CAD Consortium. Large-scale gene-centric analysis identifies novel variants for coronary artery disease. PLoS Genet. 7, e1002260 (2011).
  6. Samani, N.J. et al. Genomewide association analysis of coronary artery disease. N. Engl. J. Med. 357, 443–453 (2007).
    Article CAS PubMed PubMed Central Google Scholar
  7. Schunkert, H. et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat. Genet. 43, 333–338 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  8. Erdmann, J. et al. New susceptibility locus for coronary artery disease on chromosome 3q22.3. Nat. Genet. 41, 280–282 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  9. CARDIoGRAMplusC4D Consortium. A comprehensive 1000 Genomes–based genome-wide association meta-analysis of coronary artery disease. Nat. Genet. 47, 1121–1130 (2015).
  10. Voight, B.F. et al. The Metabochip, a custom genotyping array for genetic studies of metabolic, cardiovascular, and anthropometric traits. PLoS Genet. 8, e1002793 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  11. Segrè, A.V., Wei, N., Altshuler, D. & Florez, J.C. Pathways targeted by antidiabetes drugs are enriched for multiple genes associated with type 2 diabetes risk. Diabetes 64, 1470–1483 (2015).
    Article PubMed Google Scholar
  12. GTEx Consortium. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).
  13. Grundberg, E. et al. Mapping _cis_- and _trans_-regulatory effects across multiple tissues in twins. Nat. Genet. 44, 1084–1089 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  14. Franzén, O. et al. Cardiometabolic risk loci share downstream _cis_- and _trans_-gene regulation across tissues and diseases. Science 353, 827–830 (2016).
    Article PubMed PubMed Central Google Scholar
  15. Ward, L.D. & Kellis, M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 40, D930–D934 (2012).
    Article CAS PubMed Google Scholar
  16. Staley, J.R. et al. PhenoScanner: a database of human genotype–phenotype associations. Bioinformatics 32, 3207–3209 (2016).
    CAS PubMed PubMed Central Google Scholar
  17. Global Lipids Genetics Consortium. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 45, 1274–1283 (2013).
  18. Teslovich, T.M. et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466, 707–713 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  19. International Consortium for Blood Pressure Genome-Wide Association Studies. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478, 103–109 (2011).
  20. Surendran, P. et al. Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nat. Genet. 48, 1151–1161 (2016).
    Article CAS PubMed PubMed Central Google Scholar
  21. Zanoni, P. et al. Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease. Science 351, 1166–1171 (2016).
    Article CAS PubMed PubMed Central Google Scholar
  22. Boettger, L.M. et al. Recurring exon deletions in the HP (haptoglobin) gene contribute to lower blood cholesterol levels. Nat. Genet. 48, 359–366 (2016).
    Article CAS PubMed PubMed Central Google Scholar
  23. Johansson, Å. et al. Identification of genetic variants influencing the human plasma proteome. Proc. Natl. Acad. Sci. USA 110, 4673–4678 (2013).
    Article CAS PubMed PubMed Central Google Scholar
  24. Holme, I., Aastveit, A.H., Hammar, N., Jungner, I. & Walldius, G. Haptoglobin and risk of myocardial infarction, stroke, and congestive heart failure in 342,125 men and women in the Apolipoprotein MOrtality RISk study (AMORIS). Ann. Med. 41, 522–532 (2009).
    Article CAS PubMed Google Scholar
  25. Levy, A.P. et al. Haptoglobin genotype is a determinant of iron, lipid peroxidation, and macrophage accumulation in the atherosclerotic plaque. Arterioscler. Thromb. Vasc. Biol. 27, 134–140 (2007).
    Article CAS PubMed Google Scholar
  26. Westra, H.J. et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat. Genet. 45, 1238–1243 (2013).
    Article CAS PubMed PubMed Central Google Scholar
  27. Dennis, J. et al. The endothelial protein C receptor (PROCR) Ser219Gly variant and risk of common thrombotic disorders: a HuGE review and meta-analysis of evidence from observational studies. Blood 119, 2392–2400 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  28. Tang, W. et al. Genome-wide association study identifies novel loci for plasma levels of protein C: the ARIC study. Blood 116, 5032–5036 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  29. Smith, N.L. et al. Novel associations of multiple genetic loci with plasma levels of factor VII, factor VIII, and von Willebrand factor: the CHARGE (Cohorts for Heart and Aging Research in Genome Epidemiology) Consortium. Circulation 121, 1382–1392 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  30. Qu, D., Wang, Y., Song, Y., Esmon, N.L. & Esmon, C.T. The Ser219-->Gly dimorphism of the endothelial protein C receptor contributes to the higher soluble protein levels observed in individuals with the A3 haplotype. J. Thromb. Haemost. 4, 229–235 (2006).
    Article CAS PubMed Google Scholar
  31. Reiner, A.P. et al. PROC, PROCR and PROS1 polymorphisms, plasma anticoagulant phenotypes, and risk of cardiovascular disease and mortality in older adults: the Cardiovascular Health Study. J. Thromb. Haemost. 6, 1625–1632 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  32. Uhlen, M. et al. Towards a knowledge-based Human Protein Atlas. Nat. Biotechnol. 28, 1248–1250 (2010).
    Article CAS PubMed Google Scholar
  33. Uhlén, M. et al. Tissue-based map of the human proteome. Science 347, 1260419 (2015).
    Article PubMed Google Scholar
  34. Greenawalt, D.M. et al. A survey of the genetics of stomach, liver, and adipose gene expression from a morbidly obese cohort. Genome Res. 21, 1008–1016 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  35. Nanda, V. & Miano, J.M. Leiomodin 1, a new serum response factor–dependent target gene expressed preferentially in differentiated smooth muscle cells. J. Biol. Chem. 287, 2459–2467 (2012).
    Article CAS PubMed Google Scholar
  36. Chen, J., Kitchen, C.M., Streb, J.W. & Miano, J.M. Myocardin: a component of a molecular switch for smooth muscle differentiation. J. Mol. Cell. Cardiol. 34, 1345–1356 (2002).
    Article CAS PubMed Google Scholar
  37. Wang, Z., Wang, D.Z., Pipes, G.C. & Olson, E.N. Myocardin is a master regulator of smooth muscle gene expression. Proc. Natl. Acad. Sci. USA 100, 7129–7134 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  38. Kirsten, H. et al. Dissecting the genetics of the human transcriptome identifies novel trait-related _trans_-eQTLs and corroborates the regulatory relevance of non-protein coding loci. Hum. Mol. Genet. 24, 4746–4763 (2015).
    Article CAS PubMed PubMed Central Google Scholar
  39. Fairfax, B.P. et al. Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression. Science 343, 1246949 (2014).
    Article PubMed PubMed Central Google Scholar
  40. Privratsky, J.R. et al. Relative contribution of PECAM-1 adhesion and signaling to the maintenance of vascular integrity. J. Cell Sci. 124, 1477–1485 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  41. Harry, B.L. et al. Endothelial cell PECAM-1 promotes atherosclerotic lesions in areas of disturbed flow in ApoE-deficient mice. Arterioscler. Thromb. Vasc. Biol. 28, 2003–2008 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  42. Goel, R. et al. Site-specific effects of PECAM-1 on atherosclerosis in LDL receptor–deficient mice. Arterioscler. Thromb. Vasc. Biol. 28, 1996–2002 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  43. Lappalainen, T. et al. Transcriptome and genome sequencing uncovers functional variation in humans. Nature 501, 506–511 (2013).
    Article CAS PubMed PubMed Central Google Scholar
  44. Zeller, T. et al. Genetics and beyond—the transcriptome of human monocytes and disease susceptibility. PLoS One 5, e10693 (2010).
    Article PubMed PubMed Central Google Scholar
  45. Schröder, A. et al. Genomics of ADME gene expression: mapping expression quantitative trait loci relevant for absorption, distribution, metabolism and excretion of drugs in human liver. Pharmacogenomics J. 13, 12–20 (2013).
    Article PubMed Google Scholar
  46. Schadt, E.E. et al. Mapping the genetic architecture of gene expression in human liver. PLoS Biol. 6, e107 (2008).
    Article PubMed PubMed Central Google Scholar
  47. Lin, H. et al. Gene expression and genetic variation in human atria. Heart Rhythm 11, 266–271 (2014).
    Article PubMed Google Scholar
  48. Narahara, M. et al. Large-scale East-Asian eQTL mapping reveals novel candidate genes for LD mapping and the genomic landscape of transcriptional effects of sequence variants. PLoS One 9, e100924 (2014).
    Article PubMed PubMed Central Google Scholar
  49. Innocenti, F. et al. Identification, replication, and functional fine-mapping of expression quantitative trait loci in primary human liver tissue. PLoS Genet. 7, e1002078 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  50. Assimes, T.L. et al. Genetics of coronary artery disease in Taiwan: a cardiometabochip study by the Taichi Consortium. PLoS One 11, e0138014 (2016).
    Article PubMed PubMed Central Google Scholar
  51. Franceschini, N. et al. Prospective associations of coronary heart disease loci in African Americans using the MetaboChip: the PAGE study. PLoS One 9, e113203 (2014).
    Article PubMed PubMed Central Google Scholar
  52. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).
    Article CAS PubMed PubMed Central Google Scholar
  53. Zhou, X. & Stephens, M. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 44, 821–824 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  54. Willer, C.J., Li, Y. & Abecasis, G.R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).
    CAS PubMed PubMed Central Google Scholar
  55. Morris, A.P. Transethnic meta-analysis of genomewide association studies. Genet. Epidemiol. 35, 809–822 (2011).
    Article PubMed PubMed Central Google Scholar
  56. Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 44, 369–375 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  57. Zhang, X. et al. Synthesis of 53 tissue and cell line expression QTL datasets reveals master eQTLs. BMC Genomics 15, 532 (2014).
    Article PubMed PubMed Central Google Scholar
  58. Ernst, J. & Kellis, M. Discovery and characterization of chromatin states for systematic annotation of the human genome. Nat. Biotechnol. 28, 817–825 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  59. Ernst, J. & Kellis, M. ChromHMM: automating chromatin-state discovery and characterization. Nat. Methods 9, 215–216 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  60. Moore, C. et al. The INTERVAL trial to determine whether intervals between blood donations can be safely and acceptably decreased to optimise blood supply: study protocol for a randomised controlled trial. Trials 15, 363 (2014).
    Article PubMed PubMed Central Google Scholar
  61. Astle, W.J. et al. The allelic landscape of human blood cell trait variation and links to common complex disease. Cell 167, 1415–1429 (2016).
    Article CAS PubMed PubMed Central Google Scholar
  62. Abecasis, G.R. et al. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).
    Article PubMed Google Scholar
  63. Arnold, M., Raffler, J., Pfeufer, A., Suhre, K. & Kastenmüller, G. SNiPA: an interactive, genetic variant–centered annotation browser. Bioinformatics 31, 1334–1336 (2015).
    Article PubMed Google Scholar

Download references

Acknowledgements

J.D. is a British Heart Foundation Professor, European Research Council Senior Investigator and NIHR Senior Investigator. J.D.E. and A.D.J. were supported by NHLBI Intramural Research Program funds. N.F. is supported by R21HL123677-01 and R56 DK104806-01A1. N.S. is supported by the British Heart Foundation and is an NIHR Senior Investigator. T.L.A. is supported by NIH career development award K23DK088942. This work was funded by the UK Medical Research Council (G0800270), the British Heart Foundation (SP/09/002), the UK National Institute for Health Research Cambridge Biomedical Research Centre, the European Research Council (268834), European Commission Framework Programme 7 (HEALTH-F2-2012-279233) and Pfizer. The eQTL database construction was supported by NHLBI intramural funds. The views expressed in this manuscript are those of the authors and do not necessarily represent the views of the National Heart, Lung, and Blood Institute, the National Institutes of Health, or the US Department of Health and Human Services.

A full list of acknowledgments for the studies contributing to this work is provided in the Supplementary Note.

Author information

Author notes

  1. Wei Zhao, Daniel R Barnes, Themistocles L Assimes, John Danesh, Adam S Butterworth and Danish Saleheen: These authors contributed equally to this work.

Authors and Affiliations

  1. Department of Public Health and Primary Care, MRC/BHF Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, UK
    Joanna M M Howson, Daniel R Barnes, Weang-Kee Ho, Robin Young, Dirk S Paul, Daniel F Freitag, Benjamin B Sun, Wei-Yu Lin, Praveen Surendran, Emanuele Di Angelantonio, Rajiv Chowdhury, John Danesh, Adam S Butterworth & Danish Saleheen
  2. Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
    Wei Zhao & Danish Saleheen
  3. Department of Applied Mathematics, University of Nottingham Malaysia Campus, Semenyih, Malaysia
    Weang-Kee Ho
  4. Robertson Centre for Biostatistics, University of Glasgow, Glasgow, UK
    Robin Young
  5. HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
    Lindsay L Waite & Devin Absher
  6. Pfizer Worldwide Research and Development, Cambridge, Massachusetts, USA
    Eric B Fauman
  7. Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, California, USA
    Elias L Salfati, Thomas Quertermous & Themistocles L Assimes
  8. Stanford Cardiovascular Institute, Stanford University, Stanford, California, USA
    Elias L Salfati, Thomas Quertermous & Themistocles L Assimes
  9. National Heart, Lung, and Blood Institute, Population Sciences Branch, Bethesda, Maryland, USA
    John D Eicher & Andrew D Johnson
  10. NHLBI and Boston University's The Framingham Heart Study, Framingham, Massachusetts, USA
    John D Eicher & Andrew D Johnson
  11. Division of Endocrine and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
    Wayne H H Sheu
  12. School of Medicine, National Yang-Ming University, Taipei, Taiwan
    Wayne H H Sheu
  13. College of Medicine, National Defense Medical Center, Taipei, Taiwan
    Wayne H H Sheu & Yi-Jen Hung
  14. Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
    Sune F Nielsen, Katrine L Rasmussen, Pia R Kamstrup & Børge G Nordestgaard
  15. Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
    Wei-Yu Lin
  16. Pfizer Worldwide Research and Development, Stockholm, Sweden
    Anders Malarstig
  17. Pfizer Worldwide Research and Development, Human Genetics, Cambridge, Massachusetts, USA
    Jemma B Wilk
  18. Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
    Anne Tybjærg-Hansen
  19. Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
    Anne Tybjærg-Hansen & Børge G Nordestgaard
  20. William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
    Panos Deloukas
  21. Centre for Genomic Health, Queen Mary University of London, London, UK
    Panos Deloukas
  22. Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
    Jeanette Erdmann
  23. DZHK (German Research Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
    Jeanette Erdmann
  24. University Heart Center Lübeck, Lübeck, Germany
    Jeanette Erdmann
  25. Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
    Sekar Kathiresan
  26. Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
    Sekar Kathiresan
  27. Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
    Nilesh J Samani
  28. NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
    Nilesh J Samani
  29. Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
    Heribert Schunkert
  30. DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
    Heribert Schunkert
  31. Radcliffe Department of Medicine, University of Oxford, Oxford, UK
    Hugh Watkins
  32. Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
    Hugh Watkins
  33. Department of Genetics and Genomic Sciences, Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
    Ron Do
  34. Departments of Genetics, Medicine, and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
    Daniel J Rader
  35. University of Florida College of Pharmacy, Gainesville, Florida, USA
    Julie A Johnson
  36. Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland, Ohio, USA
    Stanley L Hazen
  37. Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia, USA
    Arshed A Quyyumi
  38. Saint Luke's Mid America Heart Institute, Kansas City, Missouri, USA
    John A Spertus
  39. Department of Biomedical and Health Informatics, University of Missouri–Kansas City, Kansas City, Missouri, USA
    John A Spertus
  40. College of Medicine, University of Florida, Gainesville, Florida, USA
    Carl J Pepine
  41. Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
    Nora Franceschini, Anne Justice, Kari E North, Kristin Young & Mariaelisa Graff
  42. Department of Epidemiology, University of Washington, Seattle, Washington, USA
    Alex P Reiner
  43. Department of Statistics and Biostatistics, Rutgers University, Piscataway, New Jersey, USA
    Steven Buyske
  44. Division of Genomic Medicine, National Human Genome Research Institute, US National Institutes of Health, Bethesda, Maryland, USA
    Lucia A Hindorff
  45. Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
    Cara L Carty, Charles Kooperberg & Ulrike Peters
  46. Carolina Center for Genome Sciences, Chapel Hill, North Carolina, USA
    Kari E North
  47. Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas, USA
    Eric Boerwinkle
  48. Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
    Eric Boerwinkle
  49. Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
    Chao A Hsiung, Ying-Hsiang Chen & Ren-Hua Chung
  50. Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
    Wen-Jane Lee
  51. Department of Pediatrics, Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, California, USA
    Kent D Taylor, Xiuqing Guo & Yii-Der Ida Chen
  52. School of Medicine, Chung Shan Medical University, Taichung, Taiwan
    I-Te Lee
  53. Division of Endocrinology and Metabolism, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
    Yi-Jen Hung
  54. Departments of Pediatrics and Medicine, Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, California, USA
    Jerome I Rotter
  55. Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
    Jyh-Ming J Juang & Tzung-Dau Wang
  56. National Taiwan University College of Medicine, Taipei, Taiwan
    Jyh-Ming J Juang & Tzung-Dau Wang
  57. Centre for Non-Communicable Disease, Karachi, Pakistan
    Asif Rasheed, Philippe Frossard & Danish Saleheen
  58. School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
    Dewan S Alam
  59. National Institute of Cardiovascular Diseases, Sher-e-Bangla Nagar, Bangladesh
    Abdulla al Shafi Majumder
  60. National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
    Emanuele Di Angelantonio, John Danesh & Adam S Butterworth
  61. Wellcome Trust Sanger Institute, Hinxton, UK
    John Danesh
  62. Department of Medicine, British Heart Foundation Cambridge Centre of Excellence, University of Cambridge, Cambridge, UK
    John Danesh

Authors

  1. Joanna M M Howson
  2. Wei Zhao
  3. Daniel R Barnes
  4. Weang-Kee Ho
  5. Robin Young
  6. Dirk S Paul
  7. Lindsay L Waite
  8. Daniel F Freitag
  9. Eric B Fauman
  10. Elias L Salfati
  11. Benjamin B Sun
  12. John D Eicher
  13. Andrew D Johnson
  14. Wayne H H Sheu
  15. Sune F Nielsen
  16. Wei-Yu Lin
  17. Praveen Surendran
  18. Anders Malarstig
  19. Jemma B Wilk
  20. Anne Tybjærg-Hansen
  21. Katrine L Rasmussen
  22. Pia R Kamstrup
  23. Panos Deloukas
  24. Jeanette Erdmann
  25. Sekar Kathiresan
  26. Nilesh J Samani
  27. Heribert Schunkert
  28. Hugh Watkins
  29. Ron Do
  30. Daniel J Rader
  31. Julie A Johnson
  32. Stanley L Hazen
  33. Arshed A Quyyumi
  34. John A Spertus
  35. Carl J Pepine
  36. Nora Franceschini
  37. Anne Justice
  38. Alex P Reiner
  39. Steven Buyske
  40. Lucia A Hindorff
  41. Cara L Carty
  42. Kari E North
  43. Charles Kooperberg
  44. Eric Boerwinkle
  45. Kristin Young
  46. Mariaelisa Graff
  47. Ulrike Peters
  48. Devin Absher
  49. Chao A Hsiung
  50. Wen-Jane Lee
  51. Kent D Taylor
  52. Ying-Hsiang Chen
  53. I-Te Lee
  54. Xiuqing Guo
  55. Ren-Hua Chung
  56. Yi-Jen Hung
  57. Jerome I Rotter
  58. Jyh-Ming J Juang
  59. Thomas Quertermous
  60. Tzung-Dau Wang
  61. Asif Rasheed
  62. Philippe Frossard
  63. Dewan S Alam
  64. Abdulla al Shafi Majumder
  65. Emanuele Di Angelantonio
  66. Rajiv Chowdhury
  67. Yii-Der Ida Chen
  68. Børge G Nordestgaard
  69. Themistocles L Assimes
  70. John Danesh
  71. Adam S Butterworth
  72. Danish Saleheen

Consortia

CARDIoGRAMplusC4D

EPIC-CVD

Contributions

Central analysis group: J.M.M.H., W.Z., D.R.B., T.L.A., A.S.B., D.S. Writing group: J.M.M.H., W.Z., D.R.B., D.S.P., T.L.A., A.S.B., J.D. Study analysts: J.M.M.H., W.-K.H., R.Y., L.L.W., E.L.S., S.F.N., W.-Y.L., R.D., N.F., A.J., A.P.R., C.L.C., K.Y., M.G., D.A., C.A.H., Y.-H.C., X.G., T.L.A. Study PIs and co-PIs: W.H.-H.S., P.D., J.E., S.K., N.J.S., H.S., H.W., D.J.R., J.A.J., S.L.H., A.A.Q., J.S., C.J.P., K.E.N., C.K., U.P., C.A.H., W.-J.L., I.-T.L., R.-H.C., Y.-J.H., J.I.R., J.-M.J.J., T.Q., T.-D.W., D.S.A., A.a.S.M., E.D.A., R.C., Y.-D.I.C., B.G.N., T.L.A., J.D., A.S.B., D.S., A.R., P.F. Bioinformatics, eQTL, pQTL and pathway analyses: D.S.P., W.Z., D.R.B., D.F.F., T.L.A., E.B.F., A.M., J.B.W., E.L.S., B.B.S., A.S.B., J.D.E., A.D.J., P.S., T.L.A., J.M.M.H. Genotyping: S.B., L.A.H., C.K., E.B., U.P., D.A., K.D.T., T.Q., T.L.A. Phenotyping: W.H.H.S., A.T.-H., K.L.R., P.R.K., K.E.N., C.K., C.A.H., W.-J.L., I.-T.L., R.-H.C., Y.-J.H., J.-M.J.J., T.Q., Y.-D.I.C.

Corresponding author

Correspondence toJoanna M M Howson.

Ethics declarations

Competing interests

A.M., E.B.F. and J.B.W. are full-time employees of Pfizer. D.F.F. is now a full-time employee of Bayer AG, Germany. J.D. reports personal fees and non-financial support from Merck Sharp & Dohme UK Atherosclerosis, the Novartis Cardiovascular & Metabolic Advisory Board, the Pfizer Population Research Advisory Panel and the Sanofi Advisory Board.

Additional information

A full list of members and affiliations appears in the Supplementary Note.

A full list of members and affiliations appears in the Supplementary Note.

Supplementary information

Rights and permissions

About this article

Cite this article

Howson, J., Zhao, W., Barnes, D. et al. Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms.Nat Genet 49, 1113–1119 (2017). https://doi.org/10.1038/ng.3874

Download citation