Brahma links the SWI/SNF chromatin-remodeling complex with MeCP2-dependent transcriptional silencing (original) (raw)

References

  1. El-Osta, A. & Wolffe, A.P. DNA methylation and histone deacetylation in the control of gene expression: basic biochemistry to human development and disease. Gene Expr. 9, 63–75 (2000).
    Article CAS Google Scholar
  2. Meehan, R.R., Lewis, J.D., Mckay, S., Kleiner, E.L. & Bird, A.P. Identification of a mammalian protein that binds specifically to DNA containing methylated CpGs. Cell 58, 499–507 (1989).
    Article CAS Google Scholar
  3. Jones, P.L. et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat. Genet. 19, 187–191 (1998).
    Article CAS Google Scholar
  4. Nan, X. et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393, 386–389 (1998).
    Article CAS Google Scholar
  5. Bird, A.P. & Wolffe, A.P. Methylation-induced repression–belts, braces, and chromatin. Cell 99, 451–454 (1999).
    Article CAS Google Scholar
  6. Fuks, F. et al. The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J. Biol. Chem. 278, 4035–4040 (2003).
    Article CAS Google Scholar
  7. Kimura, H. & Shiota, K. Methyl-CpG-binding protein, MeCP2, is a target molecule for maintenance DNA methyltransferase, Dnmt1. J. Biol. Chem. 278, 4806–4812 (2003).
    Article CAS Google Scholar
  8. Narlikar, G.J., Fan, H.Y. & Kingston, R.E. Cooperation between complexes that regulate chromatin structure and transcription. Cell 108, 475–487 (2002).
    Article CAS Google Scholar
  9. Peterson, C.L. & Workman, J.L. Promoter targeting and chromatin remodeling by the SWI/SNF complex. Curr. Opin. Genet. Dev. 10, 187–192 (2000).
    Article CAS Google Scholar
  10. Wang, W. et al. Purification and biochemical heterogeneity of the mammalian SWI-SNF complex. EMBO J. 15, 5370–5382 (1996).
    Article CAS Google Scholar
  11. Wang, W. et al. Diversity and specialization of mammalian SWI/SNF complexes. Genes Dev. 10, 2117–2130 (1996).
    Article CAS Google Scholar
  12. Martens, J.A. & Winston, F. Evidence that Swi/Snf directly represses transcription in S. cerevisiae. Genes Dev. 16, 2231–2236 (2002).
    Article CAS Google Scholar
  13. Tong, J.K., Hassig, C.A., Schnitzler, G.R., Kingston, R.E. & Schreiber, S.L. Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. Nature 395, 917–921 (1998).
    Article CAS Google Scholar
  14. Sif, S., Saurin, A.J., Imbalzano, A.N. & Kingston, R.E. Purification and characterization of mSin3A-containing Brg1 and hBrm chromatin remodeling complexes. Genes Dev. 15, 603–618 (2001).
    Article CAS Google Scholar
  15. Bowen, N.J., Fujita, N., Kajita, M. & Wade, P.A. Mi-2/NuRD: multiple complexes for many purposes. Biochim. Biophys. Acta 1677, 52–57 (2004).
    Article CAS Google Scholar
  16. El-Osta, A., Kantharidis, P., Zalcberg, J.R. & Wolffe, A.P. Precipitous release of methyl-CpG binding protein 2 and histone deacetylase 1 from the methylated human multidrug resistance gene (MDR1) on activation. Mol. Cell. Biol. 22, 1844–1857 (2002).
    Article CAS Google Scholar
  17. Cameron, E.E., Bachman, K.E., Myohanen, S., Herman, J.G. & Baylin, S.B. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat. Genet. 21, 103–107 (1999).
    Article CAS Google Scholar
  18. Coffee, B., Zhang, F., Warren, S.T. & Reines, D. Acetylated histones are associated with FMR1 in normal but not fragile X-syndrome cells. Nat. Genet. 22, 98–101 (1999).
    Article CAS Google Scholar
  19. Magdinier, F. & Wolffe, A.P. Selective association of the methyl-CpG binding protein MBD2 with the silent p14/p16 locus in human neoplasia. Proc. Natl. Acad. Sci. USA 98, 4990–4995 (2001).
    Article CAS Google Scholar
  20. Nguyen, C.T., Gonzales, F.A. & Jones, P.A. Altered chromatin structure associated with methylation-induced gene silencing in cancer cells: correlation of accessibility, methylation, MeCP2 binding and acetylation. Nucleic Acids Res. 29, 4598–4606 (2001).
    Article CAS Google Scholar
  21. Ballestar, E. et al. Methyl-CpG binding proteins identify novel sites of epigenetic inactivation in human cancer. EMBO J. 22, 6335–6345 (2003).
    Article CAS Google Scholar
  22. Pal, S. et al. mSin3A/histone deacetylase 2- and PRMT5-containing Brg1 complex is involved in transcriptional repression of the Myc target gene cad. Mol. Cell. Biol. 23, 7475–7487 (2003).
    Article CAS Google Scholar
  23. El-Osta, A., Baker, E.K. & Wolffe, A.P. Profiling methyl-CpG specific determinants on transcriptionally silent chromatin. Mol. Biol. Rep. 28, 209–215 (2001).
    Article CAS Google Scholar
  24. Li, Q., Ahuja, N., Burger, P.C. & Issa, J.P. Methylation and silencing of the Thrombospondin-1 promoter in human cancer. Oncogene 18, 3284–3289 (1999).
    Article CAS Google Scholar
  25. Hannon, G.J. RNA interference. Nature 418, 244–251 (2002).
    Article CAS Google Scholar
  26. Jin, P. & Warren, S.T. Understanding the molecular basis of fragile X syndrome. Hum. Mol. Genet. 9, 901–908 (2000).
    Article CAS Google Scholar
  27. Oberle, I. et al. Instability of a 550-base pair DNA segment and abnormal methylation in fragile X syndrome. Science 252, 1097–1102 (1991).
    Article CAS Google Scholar
  28. Kremer, E.J. et al. Mapping of DNA instability at the fragile X to a trinucleotide repeat sequence p(CCG)n. Science 252, 1711–1714 (1991).
    Article CAS Google Scholar
  29. Verheij, C. et al. Characterization of FMR1 proteins isolated from different tissues. Hum. Mol. Genet. 4, 895–901 (1995).
    Article CAS Google Scholar
  30. Klose, R.J. & Bird, A.P. MeCP2 behaves as an elongated monomer that does not stably associate with the Sin3a chromatin remodeling complex. J. Biol. Chem. 279, 46490–46496 (2004).
    Article CAS Google Scholar
  31. Battaglioli, E. et al. REST repression of neuronal genes requires components of the hSWI.SNF complex. J. Biol. Chem. 277, 41038–41045 (2002).
    Article CAS Google Scholar
  32. Kass, S.U., Landsberger, N. & Wolffe, A.P. DNA methylation directs a time-dependent repression of transcription initiation. Curr. Biol. 7, 157–165 (1997).
    Article CAS Google Scholar
  33. Flaus, A. & Owen-Hughes, T. Dynamic properties of nucleosomes during thermal and ATP-driven mobilization. Mol. Cell. Biol. 23, 7767–7779 (2003).
    Article CAS Google Scholar
  34. Fyodorov, D.V., Blower, M.D., Karpen, G.H. & Kadonaga, J.T. Acf1 confers unique activities to ACF/CHRAC and promotes the formation rather than disruption of chromatin in vivo. Genes Dev. 18, 170–183 (2004).
    Article CAS Google Scholar
  35. Jones, P.A. & Laird, P.W. Cancer epigenetics comes of age. Nat. Genet. 21, 163–167 (1999).
    Article CAS Google Scholar
  36. Di, C.L. et al. Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 295, 1079–1082 (2002).
    Article Google Scholar
  37. Rhee, I. et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 416, 552–556 (2002).
    Article CAS Google Scholar
  38. Godde, J.S., Kass, S.U., Hirst, M.C. & Wolffe, A.P. Nucleosome assembly on methylated CGG triplet repeats in the fragile X mental retardation gene 1 promoter. J. Biol. Chem. 271, 24325–24328 (1996).
    Article CAS Google Scholar
  39. Sutcliffe, J.S. et al. DNA methylation represses FMR-1 transcription in fragile X syndrome. Hum. Mol. Genet. 1, 397–400 (1992).
    Article CAS Google Scholar
  40. Coffee, B., Zhang, F., Ceman, S., Warren, S.T. & Reines, D. Histone modifications depict an aberrantly heterochromatinized FMR1 gene in fragile x syndrome. Am. J. Hum. Genet. 71, 923–932 (2002).
    Article Google Scholar
  41. Hendrich, B., Guy, J., Ramsahoye, B., Wilson, V.A. & Bird, A. Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development. Genes Dev. 15, 710–723 (2001).
    Article CAS Google Scholar
  42. Wade, P.A. et al. Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. Nat. Genet. 23, 62–66 (1999).
    Article CAS Google Scholar
  43. Zhang, Y. et al. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev. 13, 1924–1935 (1999).
    Article CAS Google Scholar
  44. Damelin, M. et al. The genome-wide localization of Rsc9, a component of the RSC chromatin-remodeling complex, changes in response to stress. Mol. Cell 9, 563–573 (2002).
    Article CAS Google Scholar
  45. Ng, H.H., Robert, F., Young, R.A. & Struhl, K. Genome-wide location and regulated recruitment of the RSC nucleosome-remodeling complex. Genes Dev. 16, 806–819 (2002).
    Article CAS Google Scholar
  46. Goldmark, J.P., Fazzio, T.G., Estep, P.W., Church, G.M. & Tsukiyama, T. The Isw2 chromatin remodeling complex represses early meiotic genes upon recruitment by Ume6p. Cell 103, 423–433 (2000).
    Article CAS Google Scholar
  47. Martens, J.A., Laprade, L. & Winston, F. Intergenic transcription is required to repress the Saccharomyces cerevisiae SER3 gene. Nature 429, 571–574 (2004).
    Article CAS Google Scholar
  48. Valerius, O., Brendel, C., Duvel, K. & Braus, G.H. Multiple factors prevent transcriptional interference at the yeast ARO4-HIS7 locus. J. Biol. Chem. 277, 21440–21445 (2002).
    Article CAS Google Scholar
  49. Wheatley, S.P., Carvalho, A., Vagnarelli, P. & Earnshaw, W.C. INCENP is required for proper targeting of Survivin to the centromeres and the anaphase spindle during mitosis. Curr. Biol. 11, 886–890 (2001).
    Article CAS Google Scholar
  50. El-Osta, A. & Wolffe, A.P. Analysis of chromatin-immunopurified MeCP2-associated fragments. Biochem. Biophys. Res. Commun. 289, 733–737 (2001).
    Article CAS Google Scholar

Download references