Global hypomethylation of the genome in XX embryonic stem cells (original) (raw)

References

  1. Smith, A.G. Embryo-derived stem cells: of mice and men. Annu. Rev. Cell Dev. Biol. 17, 435–462 (2001).
    Article CAS PubMed Google Scholar
  2. Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21 (2002).
    Article CAS PubMed Google Scholar
  3. Sanford, J., Forrester, L., Chapman, V., Chandley, A. & Hastie, N. Methylation patterns of repetitive DNA sequences in germ cells of Mus musculus. Nucleic Acids Res. 12, 2823–2836 (1984).
    Article CAS PubMed PubMed Central Google Scholar
  4. Norris, D.P. et al. Evidence that random and imprinted Xist expression is controlled by preemptive methylation. Cell 77, 41–51 (1994).
    Article CAS PubMed Google Scholar
  5. Penny, G.D., Kay, G.F., Sheardown, S.A., Rastan, S. & Brockdorff, N. Requirement for Xist in X chromosome inactivation. Nature 379, 131–137 (1996).
    Article CAS PubMed Google Scholar
  6. Sado, T., Tada, T. & Takagi, N. Mosaic methylation of Xist gene before chromosome inactivation in undifferentiated female mouse embryonic stem and embryonic germ cells. Dev. Dyn. 205, 421–434 (1996).
    Article CAS PubMed Google Scholar
  7. Jackson, M. et al. Severe global DNA hypomethylation blocks differentiation and induces histone hyperacetylation in embryonic stem cells. Mol. Cell. Biol. 24, 8862–8871 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  8. Wutz, A. et al. Imprinted expression of the Igf2r gene depends on an intronic CpG island. Nature 389, 745–749 (1997).
    Article CAS PubMed Google Scholar
  9. Fitzpatrick, G.V., Soloway, P.D. & Higgins, M.J. Regional loss of imprinting and growth deficiency in mice with a targeted deletion of KvDMR1. Nat. Genet. 32, 426–431 (2002).
    Article CAS PubMed Google Scholar
  10. Robertson, E.J., Evans, M.J. & Kaufman, M.H. X-chromosome instability in pluripotential stem cell lines derived from parthenogenetic embryos. J. Embryol. Exp. Morphol. 74, 297–309 (1983).
    CAS PubMed Google Scholar
  11. Surani, M.A. et al. The inheritance of germline-specific epigenetic modifications during development. Phil. Trans. R. Soc. Lond. B 339, 165–172 (1993).
    Article CAS Google Scholar
  12. Dean, W. et al. Altered imprinted gene methylation and expression in completely ES cell-derived mouse fetuses: association with aberrant phenotypes. Development 125, 2273–2282 (1998).
    CAS PubMed Google Scholar
  13. Okano, M., Xie, S. & Li, E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat. Genet. 19, 219–220 (1998).
    Article CAS PubMed Google Scholar
  14. Okano, M., Bell, D.W., Haber, D.A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257 (1999).
    Article CAS PubMed Google Scholar
  15. Bestor, T.H. Activation of mammalian DNA methyltransferase by cleavage of a Zn binding regulatory domain. EMBO J. 11, 2611–2617 (1992).
    Article CAS PubMed PubMed Central Google Scholar
  16. O'Neill, L.P. et al. X-linked genes in female embryonic stem cells carry an epigenetic mark prior to the onset of X inactivation. Hum. Mol. Genet. 12, 1783–1790 (2003).
    Article CAS PubMed Google Scholar
  17. Tada, T. et al. Epigenotype switching of imprintable loci in embryonic germ cells. Dev. Genes Evol. 207, 551–561 (1998).
    Article CAS PubMed Google Scholar
  18. Durcova-Hills, G., Burgoyne, P. & McLaren, A. Analysis of sex differences in EGC imprinting. Dev. Biol. 268, 105–110 (2004).
    Article CAS PubMed Google Scholar
  19. Liang, G. et al. Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Mol. Cell. Biol. 22, 480–491 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  20. Chen, T., Ueda, Y., Dodge, J.E., Wang, Z. & Li, E. Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b. Mol. Cell. Biol. 23, 5594–5605 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  21. Lubinsky, M.S. & Hall, J.G. Genomic imprinting, monozygous twinning, and X inactivation. Lancet 337, 1288 (1991).
    Article CAS PubMed Google Scholar
  22. Weksberg, R. et al. Discordant KCNQ1OT1 imprinting in sets of monozygotic twins discordant for Beckwith-Wiedemann syndrome. Hum. Mol. Genet. 11, 1317–1325 (2002).
    Article CAS PubMed Google Scholar
  23. Smilinich, N.J. et al. A maternally methylated CpG island in KvLQT1 is associated with an antisense paternal transcript and loss of imprinting in Beckwith-Wiedemann syndrome. Proc. Natl. Acad. Sci. USA 96, 8064–8069 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  24. Durcova-Hills, G., Ainscough, J. & McLaren, A. Pluripotential stem cells derived from migrating primordial germ cells. Differentiation 68, 220–226 (2001).
    Article CAS PubMed Google Scholar
  25. Warnecke, P.M., Mann, J.R., Frommer, M. & Clark, S.J. Bisulfite sequencing in preimplantation embryos: DNA methylation profile of the upstream region of the mouse imprinted H19 gene. Genomics 51, 182–190 (1998).
    Article CAS PubMed Google Scholar
  26. Ramsahoye, B.H. Nearest-neighbor analysis. Methods Mol. Biol. 200, 9–15 (2002).
    CAS PubMed Google Scholar
  27. Mermoud, J.E., Costanzi, C., Pehrson, J.R. & Brockdorff, N. Histone macroH2A1.2 relocates to the inactive X chromosome after initiation and propagation of X-inactivation. J. Cell Biol. 147, 1399–1408 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  28. Chen, T., Ueda, Y., Xie, S. & Li, E. A novel Dnmt3a isoform produced from an alternative promoter localizes to euchromatin and its expression correlates with active de novo methylation. J. Biol. Chem. 277, 38746–38754 (2002).
    Article CAS PubMed Google Scholar

Download references