ThPOK acts late in specification of the helper T cell lineage and suppresses Runx-mediated commitment to the cytotoxic T cell lineage (original) (raw)
References
Kappes, D.J., He, X. & He, X. CD4–CD8 lineage commitment: an inside view. Nat. Immunol.6, 761–766 (2005). ArticleCASPubMed Google Scholar
Zou, Y.R. et al. Epigenetic silencing of CD4 in T cells committed to the cytotoxic lineage. Nat. Genet.29, 332–336 (2001). ArticleCASPubMed Google Scholar
Sawada, S., Scarborough, J.D., Killeen, N. & Littman, D.R. A lineage-specific transcriptional silencer regulates CD4 gene expression during T lymphocyte development. Cell77, 917–929 (1994). ArticleCASPubMed Google Scholar
Kioussis, D. & Ellmeier, W. Chromatin and CD4, CD8A and CD8B gene expression during thymic differentiation. Nat. Rev. Immunol.2, 909–919 (2002). ArticleCASPubMed Google Scholar
Laslo, P. et al. Multilineage transcriptional priming and determination of alternate hematopoietic cell fates. Cell126, 755–766 (2006). ArticleCASPubMed Google Scholar
He, X. et al. The zinc finger transcription factor Th-POK regulates CD4 versus CD8 T-cell lineage commitment. Nature433, 826–833 (2005). ArticleCASPubMed Google Scholar
Sun, G. et al. The zinc finger protein cKrox directs CD4 lineage differentiation during intrathymic T cell positive selection. Nat. Immunol.6, 373–381 (2005). ArticleCASPubMed Google Scholar
Taniuchi, I. et al. Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development. Cell111, 621–633 (2002). ArticleCASPubMed Google Scholar
Woolf, E. et al. Runx3 and Runx1 are required for CD8 T cell development during thymopoiesis. Proc. Natl. Acad. Sci. USA100, 7731–7736 (2003). ArticleCASPubMedPubMed Central Google Scholar
Egawa, T., Tillman, R.E., Naoe, Y., Taniuchi, I. & Littman, D.R. The role of the Runx transcription factors in thymocyte differentiation and in homeostasis of naive T cells. J. Exp. Med.204, 1945–1957 (2007). ArticleCASPubMedPubMed Central Google Scholar
Sato, T. et al. Dual functions of Runx proteins for reactivating CD8 and silencing CD4 at the commitment process into CD8 thymocytes. Immunity22, 317–328 (2005). ArticleCASPubMed Google Scholar
Naoe, Y. et al. Repression of interleukin-4 in T helper type 1 cells by Runx/Cbfβ binding to the Il4 silencer. J. Exp. Med.204, 1749–1755 (2007). ArticleCASPubMedPubMed Central Google Scholar
Djuretic, I.M. et al. Transcription factors T-bet and Runx3 cooperate to activate Ifng and silence Il4 in T helper type 1 cells. Nat. Immunol.8, 145–153 (2007). ArticleCASPubMed Google Scholar
Setoguchi, R. et al. Repression of the transcription factor Th-POK by Runx complexes in cytotoxic T cell development. Science319, 822–825 (2008). ArticleCASPubMed Google Scholar
He, X. et al. CD4–CD8 lineage commitment is regulated by a silencer element at the ThPOK transcription-factor locus. Immunity28, 346–358 (2008). ArticleCASPubMed Google Scholar
Levanon, D. et al. The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons. EMBO J.21, 3454–3463 (2002). ArticleCASPubMedPubMed Central Google Scholar
Li, Q.L. et al. Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell109, 113–124 (2002). ArticleCASPubMed Google Scholar
Grueter, B. et al. Runx3 regulates integrin alpha E/CD103 and CD4 expression during development of CD4−/CD8+ T cells. J. Immunol.175, 1694–1705 (2005). ArticleCASPubMed Google Scholar
Barthlott, T., Kohler, H., Pircher, H. & Eichmann, K. Differentiation of CD4highCD8low coreceptor-skewed thymocytes into mature CD8 single-positive cells independent of MHC class I recognition. Eur. J. Immunol.27, 2024–2032 (1997). ArticleCASPubMed Google Scholar
Chan, S., Correia-Neves, M., Dierich, A., Benoist, C. & Mathis, D. Visualization of CD4/CD8 T cell commitment. J. Exp. Med.188, 2321–2333 (1998). ArticleCASPubMedPubMed Central Google Scholar
Guidos, C.J., Danska, J.S., Fathman, C.G. & Weissman, I.L. T cell receptor-mediated negative selection of autoreactive T lymphocyte precursors occurs after commitment to the CD4 or CD8 lineages. J. Exp. Med.172, 835–845 (1990). ArticleCASPubMed Google Scholar
Kydd, R., Lundberg, K., Vremec, D., Harris, A.W. & Shortman, K. Intermediate steps in thymic positive selection. Generation of CD4−8+ T cells in culture from CD4+8+, CD4int8+, and CD4+8int thymocytes with up-regulated levels of TCR-CD3. J. Immunol.155, 3806–3814 (1995). CASPubMed Google Scholar
Lucas, B. & Germain, R.N. Unexpectedly complex regulation of CD4/CD8 coreceptor expression supports a revised model for CD4+CD8+ thymocyte differentiation. Immunity5, 461–477 (1996). ArticleCASPubMed Google Scholar
Lundberg, K., Heath, W., Kontgen, F., Carbone, F.R. & Shortman, K. Intermediate steps in positive selection: differentiation of CD4+8int TCRint thymocytes into CD4−8+TCRhi thymocytes. J. Exp. Med.181, 1643–1651 (1995). ArticleCASPubMed Google Scholar
Suzuki, H., Punt, J.A., Granger, L.G. & Singer, A. Asymmetric signaling requirements for thymocyte commitment to the CD4+ versus CD8+ T cell lineages: a new perspective on thymic commitment and selection. Immunity2, 413–425 (1995). ArticleCASPubMed Google Scholar
Keefe, R., Dave, V., Allman, D., Wiest, D. & Kappes, D.J. Regulation of lineage commitment distinct from positive selection. Science286, 1149–1153 (1999). ArticleCASPubMed Google Scholar
Egawa, T. et al. Genetic evidence supporting selection of the Vα14i NKT cell lineage from double-positive thymocyte precursors. Immunity22, 705–716 (2005). ArticleCASPubMed Google Scholar
Dave, V.P., Allman, D., Keefe, R., Hardy, R.R. & Kappes, D.J. HD mice: a novel mouse mutant with a specific defect in the generation of CD4+ T cells. Proc. Natl. Acad. Sci. USA95, 8187–8192 (1998). ArticleCASPubMedPubMed Central Google Scholar
Hernandez-Hoyos, G., Anderson, M.K., Wang, C., Rothenberg, E.V. & Alberola-Ila, J. GATA-3 expression is controlled by TCR signals and regulates CD4/CD8 differentiation. Immunity19, 83–94 (2003). ArticleCASPubMed Google Scholar
Pai, S.Y. et al. Critical roles for transcription factor GATA-3 in thymocyte development. Immunity19, 863–875 (2003). ArticleCASPubMed Google Scholar
Waltzer, L., Ferjoux, G., Bataille, L. & Haenlin, M. Cooperation between the GATA and RUNX factors Serpent and Lozenge during Drosophila hematopoiesis. EMBO J.22, 6516–6525 (2003). ArticleCASPubMedPubMed Central Google Scholar
Fossett, N., Hyman, K., Gajewski, K., Orkin, S.H. & Schulz, R.A. Combinatorial interactions of serpent, lozenge, and U-shaped regulate crystal cell lineage commitment during Drosophila hematopoiesis. Proc. Natl. Acad. Sci. USA100, 11451–11456 (2003). ArticleCASPubMedPubMed Central Google Scholar
Sarafova, S.D. et al. Modulation of coreceptor transcription during positive selection dictates lineage fate independently of TCR/coreceptor specificity. Immunity23, 75–87 (2005). ArticleCASPubMed Google Scholar
Singer, A. & Bosselut, R. CD4/CD8 coreceptors in thymocyte development, selection, and lineage commitment: analysis of the CD4/CD8 lineage decision. Adv. Immunol.83, 91–131 (2004). ArticleCASPubMed Google Scholar
Zijlstra, M. et al. Beta 2-microglobulin deficient mice lack CD4−8+ cytolytic T cells. Nature344, 742–746 (1990). ArticleCASPubMed Google Scholar
Grusby, M.J., Johnson, R.S., Papaioannou, V.E. & Glimcher, L.H. Depletion of CD4+ T cells in major histocompatibility complex class II-deficient mice. Science253, 1417–1420 (1991). ArticleCASPubMed Google Scholar
Lee, P.P. et al. A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity15, 763–774 (2001). ArticleCASPubMed Google Scholar
Lakso, M. et al. Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. Proc. Natl. Acad. Sci. USA93, 5860–5865 (1996). ArticleCASPubMedPubMed Central Google Scholar
Grogan, J.L. et al. Early transcription and silencing of cytokine genes underlie polarization of T helper cell subsets. Immunity14, 205–215 (2001). ArticleCASPubMed Google Scholar