Themis controls thymocyte selection through regulation of T cell antigen receptor–mediated signaling (original) (raw)

References

  1. Starr, T.K., Jameson, S.C. & Hogquist, K.A. Positive and negative selection of T cells. Annu. Rev. Immunol. 21, 139–176 (2003).
    Article CAS PubMed Google Scholar
  2. Werlen, G., Hausmann, B., Naeher, D. & Palmer, E. Signaling life and death in the thymus: timing is everything. Science 299, 1859–1863 (2003).
    Article CAS PubMed Google Scholar
  3. Malissen, B. & Malissen, M. in T cell receptors (eds. Bell, J.I., Owen, M.J. & Simpson, E.) 352–368 (Oxford University Press, Oxford, 1995).
    Google Scholar
  4. Davey, G.M. et al. Preselection thymocytes are more sensitive to T cell receptor stimulation than mature T cells. J. Exp. Med. 188, 1867–1874 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  5. Lucas, B., Stefanova, I., Yasutomo, K., Dautigny, N. & Germain, R.N. Divergent changes in the sensitivity of maturing T cells to structurally related ligands underlies formation of a useful T cell repertoire. Immunity 10, 367–376 (1999).
    Article CAS PubMed Google Scholar
  6. D'Oro, U., Vacchio, M.S., Weissman, A.M. & Ashwell, J.D. Activation of the Lck tyrosine kinase targets cell surface T cell antigen receptors for lysosomal degradation. Immunity 7, 619–628 (1997).
    Article CAS PubMed Google Scholar
  7. Naramura, M., Kole, H.K., Hu, R.-J. & Gu, H. Altered thymic positive selection and intracellular signals in Cbl-deficient mice. Proc. Natl. Acad. Sci. USA 95, 15547–15552 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  8. Alam, S.M. & Gascoigne, N.R.J. Post-translational regulation of TCR Vα allelic exclusion during T cell differentiation. J. Immunol. 160, 3883–3890 (1998).
    CAS PubMed Google Scholar
  9. Niederberger, N. et al. Allelic exclusion of the TCR α-chain is an active process requiring TCR-mediated signaling and c-Cbl. J. Immunol. 170, 4557–4563 (2003).
    Article CAS PubMed Google Scholar
  10. Fischer, A. & Malissen, B. Natural and engineered disorders of lymphocyte development. Science 280, 237–243 (1998).
    Article CAS PubMed Google Scholar
  11. Zamoyska, R. et al. The influence of the src-family kinases, Lck and Fyn, on T cell differentiation, survival and activation. Immunol. Rev. 191, 107–118 (2003).
    Article CAS PubMed Google Scholar
  12. Mariathasan, S. et al. Duration and strength of extracellular signal-regulated kinase signals are altered during positive versus negative thymocyte selection. J. Immunol. 167, 4966–4973 (2001).
    Article CAS PubMed Google Scholar
  13. Fischer, A.M., Katayama, C.D., Pages, G., Pouyssegur, J. & Hedrick, S.M. The role of erk1 and erk2 in multiple stages of T cell development. Immunity 23, 431–443 (2005).
    Article CAS PubMed Google Scholar
  14. McNeil, L.K., Starr, T.K. & Hogquist, K.A. A requirement for sustained ERK signaling during thymocyte positive selection in vivo. Proc. Natl. Acad. Sci. USA 102, 13574–13579 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  15. Daniels, M.A. et al. Thymic selection threshold defined by compartmentalization of Ras/MAPK signalling. Nature 444, 724–729 (2006).
    Article CAS PubMed Google Scholar
  16. Kane, L.P. & Hedrick, S.M. A role for calcium influx in setting the threshold for CD4+CD8+ thymocyte negative selection. J. Immunol. 156, 4594–4601 (1996).
    CAS PubMed Google Scholar
  17. Freedman, B.D., Liu, Q.H., Somersan, S., Kotlikoff, M.I. & Punt, J.A. Receptor avidity and costimulation specify the intracellular Ca2+ signaling pattern in CD4+CD8+ thymocytes. J. Exp. Med. 190, 943–952 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  18. Johnson, A.L. et al. Themis is a member of a new metazoan gene family and is required for the completion of thymocyte positive selection. Nat. Immunol. advance online publication, doi:10.1038/ni1769 (13 July 2009).
  19. Lesourne, R. et al. Themis, a T cell–specific protein important for late thymocyte development. Nat. Immunol. advance online publication, doi:10.1038/ni1768 (13 July 2009).
  20. McGuire, M.V., Suthipinijtham, P. & Gascoigne, N.R.J. The mouse Supt16h/Fact140 gene, encoding part of the FACT chromatin transcription complex, maps close to Tcra and is highly expressed in thymus. Mamm. Genome 12, 664–667 (2001).
    Article CAS PubMed Google Scholar
  21. Treeck, O., Strunck, E. & Vollmer, G. A novel basement membrane-induced gene identified in the human endometrial adenocarcinoma cell line HEC1B. FEBS Lett. 425, 426–430 (1998).
    Article CAS PubMed Google Scholar
  22. Su, A.I. et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc. Natl. Acad. Sci. USA 101, 6062–6067 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  23. Alam, S.M. et al. T cell receptor affinity and thymocyte positive selection. Nature 381, 616–620 (1996).
    Article CAS PubMed Google Scholar
  24. Hogquist, K.A. et al. T cell receptor antagonist peptides induce positive selection. Cell 76, 17–27 (1994).
    Article CAS PubMed Google Scholar
  25. Hogquist, K.A. et al. Identification of a naturally occurring ligand for positive selection. Immunity 6, 389–399 (1997).
    Article CAS PubMed Google Scholar
  26. Fiorini, E. et al. Peptide-induced negative selection of thymocytes activates transcription of an NF-κB inhibitor. Mol. Cell 9, 637–648 (2002).
    Article CAS PubMed Google Scholar
  27. Kaye, J. et al. Selective development of CD4+ T cells in transgenic mice expressing a class II MHC-restricted antigen receptor. Nature 341, 746–749 (1989).
    Article CAS PubMed Google Scholar
  28. Gallegos, A.M. & Bevan, M.J. Central tolerance to tissue-specific antigens mediated by direct and indirect antigen presentation. J. Exp. Med. 200, 1039–1049 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  29. van Ewijk, W., Hollander, G., Terhorst, C. & Wang, B. Stepwise development of thymic microenvironments in vivo is regulated by thymocyte subsets. Development 127, 1583–1591 (2000).
    CAS PubMed Google Scholar
  30. Irwin, M.J. & Gascoigne, N.R.J. Interplay between superantigens and the immune system. J. Leukoc. Biol. 54, 495–503 (1993).
    Article CAS PubMed Google Scholar
  31. Scherer, M.T., Ignatowicz, L., Winslow, G.M., Kappler, J.W. & Marrack, P. Superantigens: bacterial and viral proteins that manipulate the immune system. Annu. Rev. Cell Biol. 9, 101–128 (1993).
    Article CAS PubMed Google Scholar
  32. Kisielow, P., Bluthmann, H., Staerz, U.D., Steinmetz, M. & von Boehmer, H. Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes. Nature 333, 742–746 (1988).
    Article CAS PubMed Google Scholar
  33. Teh, H.S. et al. Thymic major histocompatibility complex antigens and the αβ T-cell receptor determine the CD4/CD8 phenotype of T cells. Nature 335, 229–233 (1988).
    Article CAS PubMed Google Scholar
  34. Teh, H.S., Kishi, H. & von Boehmer, H. Deletion of autospecific T cells in T cell receptor (TCR) transgenic mice spares cells with normal TCR levels and low levels of CD8 molecules. J. Exp. Med. 169, 795–800 (1989).
    Article CAS PubMed Google Scholar
  35. Ge, Q., Hu, H., Eisen, H.N. & Chen, J. Different contributions of thymopoiesis and homeostasis-driven proliferation to the reconstitution of naive and memory T cell compartments. Proc. Natl. Acad. Sci. USA 99, 2989–2994 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  36. Berg, L.J., Finkelstein, L.D., Lucas, J.A. & Schwartzberg, P.L. Tec family kinases in T lymphocyte development and function. Annu. Rev. Immunol. 23, 549–600 (2005).
    Article CAS PubMed Google Scholar
  37. Huang, Y.H. et al. Positive regulation of Itk PH domain function by soluble IP4. Science 316, 886–889 (2007).
    Article CAS PubMed Google Scholar
  38. Burkhardt, J.K., Carrizosa, E. & Shaffer, M.H. The actin cytoskeleton in T cell activation. Annu. Rev. Immunol. 26, 233–259 (2008).
    Article CAS PubMed Google Scholar
  39. Yachi, P.P., Ampudia, J., Gascoigne, N.R.J. & Zal, T. Nonstimulatory peptides contribute to antigen-induced CD8-T cell receptor interaction at the immunological synapse. Nat. Immunol. 6, 785–792 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  40. Yachi, P.P., Lotz, C., Ampudia, J. & Gascoigne, N.R.J. T cell activation enhancement by endogenous pMHC acts for both weak and strong agonists but varies with differentiation state. J. Exp. Med. 204, 2747–2757 (2007).
    Article CAS PubMed PubMed Central Google Scholar
  41. Liu, K.Q., Bunnell, S.C., Gurniak, C.B. & Berg, L.J. T cell receptor-initiated calcium release is uncoupled from capacitative calcium entry in Itk-deficient T cells. J. Exp. Med. 187, 1721–1727 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  42. Labno, C.M. et al. Itk functions to control actin polymerization at the immune synapse through localized activation of Cdc42 and WASP. Curr. Biol. 13, 1619–1624 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  43. Kupzig, S., Walker, S.A. & Cullen, P.J. The frequencies of calcium oscillations are optimized for efficient calcium-mediated activation of Ras and the ERK/MAPK cascade. Proc. Natl. Acad. Sci. USA 102, 7577–7582 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  44. Berg, L.J. Signalling through TEC kinases regulates conventional versus innate CD8+ T-cell development. Nat. Rev. Immunol. 7, 479–485 (2007).
    Article CAS PubMed Google Scholar
  45. Marson, A. et al. Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 445, 931–935 (2007).
    Article CAS PubMed PubMed Central Google Scholar
  46. Corpet, F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 16, 10881–10890 (1988).
    Article CAS PubMed PubMed Central Google Scholar
  47. Gouet, P., Courcelle, E., Stuart, D.I. & Metoz, F. ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15, 305–308 (1999).
    Article CAS PubMed Google Scholar

Download references