Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature447, 661–678 (2007).
Torkamani, A., Topol, E.J. & Schork, N.J. Pathway analysis of seven common diseases assessed by genome-wide association. Genomics92, 265–272 (2008). CASPubMed Google Scholar
Derbinski, J., Schulte, A., Kyewski, B. & Klein, L. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat. Immunol.2, 1032–1039 (2001). CASPubMed Google Scholar
Anderson, M.S. et al. Projection of an immunological self shadow within the thymus by the aire protein. Science298, 1395–1401 (2002). CASPubMed Google Scholar
von Boehmer, H. & Melchers, F. Checkpoints in lymphocyte development and autoimmune disease. Nat. Immunol.11, 14–20 (2010). CASPubMed Google Scholar
Wing, K. & Sakaguchi, S. Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat. Immunol.11, 7–13 (2010). CASPubMed Google Scholar
Liu, G.Y. et al. Low avidity recognition of self-antigen by T cells permits escape from central tolerance. Immunity3, 407–415 (1995). CASPubMed Google Scholar
Goverman, J. et al. Transgenic mice that express a myelin basic protein-specific T cell receptor develop spontaneous autoimmunity. Cell72, 551–560 (1993). CASPubMed Google Scholar
Goverman, J. Tolerance and autoimmunity in TCR transgenic mice specific for myelin basic protein. Immunol. Rev.169, 147–159 (1999). CASPubMedPubMed Central Google Scholar
Zehn, D. & Bevan, M.J. T cells with low avidity for a tissue-restricted antigen routinely evade central and peripheral tolerance and cause autoimmunity. Immunity25, 261–270 (2006). ArticleCASPubMedPubMed Central Google Scholar
Henrickson, S.E. et al. T cell sensing of antigen dose governs interactive behavior with dendritic cells and sets a threshold for T cell activation. Nat. Immunol.9, 282–291 (2008). CASPubMedPubMed Central Google Scholar
Lammermann, T. & Sixt, M. The microanatomy of T-cell responses. Immunol. Rev.221, 26–43 (2008). PubMed Google Scholar
Banchereau, J. & Steinman, R.M. Dendritic cells and the control of immunity. Nature392, 245–252 (1998). CASPubMed Google Scholar
Mempel, T.R., Henrickson, S.E. & Von Andrian, U.H. T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature427, 154–159 (2004). CASPubMed Google Scholar
Celli, S., Lemaitre, F. & Bousso, P. Real-time manipulation of T cell-dendritic cell interactions in vivo reveals the importance of prolonged contacts for CD4+ T cell activation. Immunity27, 625–634 (2007). CASPubMed Google Scholar
Ohashi, P.S. et al. Ablation of “tolerance” and induction of diabetes by virus infection in viral antigen transgenic mice. Cell65, 305–317 (1991). CASPubMed Google Scholar
Reinhardt, R.L., Khoruts, A., Merica, R., Zell, T. & Jenkins, M.K. Visualizing the generation of memory CD4 T cells in the whole body. Nature410, 101–105 (2001). CASPubMed Google Scholar
Masopust, D., Vezys, V., Marzo, A.L. & Lefrancois, L. Preferential localization of effector memory cells in nonlymphoid tissue. Science291, 2413–2417 (2001). CASPubMed Google Scholar
Austrup, F. et al. P- and E-selectin mediate recruitment of T-helper-1 but not T-helper-2 cells into inflamed tissues. Nature385, 81–83 (1997). CASPubMed Google Scholar
Reinhardt, R.L., Bullard, D.C., Weaver, C.T. & Jenkins, M.K. Preferential accumulation of antigen-specific effector CD4 T cells at an antigen injection site involves CD62E-dependent migration but not local proliferation. J. Exp. Med.197, 751–762 (2003). CASPubMedPubMed Central Google Scholar
Masopust, D. et al. Activated primary and memory CD8 T cells migrate to nonlymphoid tissues regardless of site of activation or tissue of origin. J. Immunol.172, 4875–4882 (2004). CASPubMed Google Scholar
Bianchi, T. et al. Maintenance of peripheral tolerance through controlled tissue homing of antigen-specific T cells in K14-mOVA mice. J. Immunol.182, 4665–4674 (2009). CASPubMed Google Scholar
Bursch, L.S., Rich, B.E. & Hogquist, K.A. Langerhans cells are not required for the CD8 T cell response to epidermal self-antigens. J. Immunol.182, 4657–4664 (2009). CASPubMed Google Scholar
Mrass, P. & Weninger, W. Immune cell migration as a means to control immune privilege: lessons from the CNS and tumors. Immunol. Rev.213, 195–212 (2006). PubMed Google Scholar
Lee, J.W. et al. Peripheral antigen display by lymph node stroma promotes T cell tolerance to intestinal self. Nat. Immunol.8, 181–190 (2007). CASPubMed Google Scholar
Ackerman, A.L., Giodini, A. & Cresswell, P. A role for the endoplasmic reticulum protein retrotranslocation machinery during crosspresentation by dendritic cells. Immunity25, 607–617 (2006). CASPubMed Google Scholar
Hawiger, D. et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J. Exp. Med.194, 769–780 (2001). CASPubMedPubMed Central Google Scholar
Liu, K. et al. Immune tolerance after delivery of dying cells to dendritic cells in situ. J. Exp. Med.196, 1091–1097 (2002). CASPubMedPubMed Central Google Scholar
Laufer, T.M., DeKoning, J., Markowitz, J.S., Lo, D. & Glimcher, L.H. Unopposed positive selection and autoreactivity in mice expressing class II MHC only on thymic cortex. Nature383, 81–85 (1996). CASPubMed Google Scholar
Laufer, T.M., Fan, L. & Glimcher, L.H. Self-reactive T cells selected on thymic cortical epithelium are polyclonal and are pathogenic in vivo. J. Immunol.162, 5078–5084 (1999). CASPubMed Google Scholar
Scheinecker, C., McHugh, R., Shevach, E.M. & Germain, R.N. Constitutive presentation of a natural tissue autoantigen exclusively by dendritic cells in the draining lymph node. J. Exp. Med.196, 1079–1090 (2002). CASPubMedPubMed Central Google Scholar
Luckashenak, N. et al. Constitutive crosspresentation of tissue antigens by dendritic cells controls CD8+ T cell tolerance in vivo. Immunity28, 521–532 (2008). CASPubMed Google Scholar
Kerksiek, K.M., Niedergang, F., Chavrier, P., Busch, D.H. & Brocker, T. Selective Rac1 inhibition in dendritic cells diminishes apoptotic cell uptake and cross-presentation in vivo. Blood105, 742–749 (2005). CASPubMed Google Scholar
Gallucci, S., Lolkema, M. & Matzinger, P. Natural adjuvants: endogenous activators of dendritic cells. Nat. Med.5, 1249–1255 (1999). CASPubMed Google Scholar
Rothlin, C.V., Ghosh, S., Zuniga, E.I., Oldstone, M.B. & Lemke, G. TAM receptors are pleiotropic inhibitors of the innate immune response. Cell131, 1124–1136 (2007). CASPubMed Google Scholar
Lu, Q. & Lemke, G. Homeostatic regulation of the immune system by receptor tyrosine kinases of the Tyro 3 family. Science293, 306–311 (2001). CASPubMed Google Scholar
Wallet, M.A. et al. MerTK is required for apoptotic cell-induced T cell tolerance. J. Exp. Med.205, 219–232 (2008). CASPubMedPubMed Central Google Scholar
Pasare, C. & Medzhitov, R. Toll-dependent control mechanisms of CD4 T cell activation. Immunity21, 733–741 (2004). CASPubMed Google Scholar
Jiang, A. et al. Disruption of E-cadherin-mediated adhesion induces a functionally distinct pathway of dendritic cell maturation. Immunity27, 610–624 (2007). PubMedPubMed Central Google Scholar
Morelli, A.E. & Thomson, A.W. Tolerogenic dendritic cells and the quest for transplant tolerance. Nat. Rev. Immunol.7, 610–621 (2007). CASPubMed Google Scholar
Lo, D., Burkly, L.C., Flavell, R.A., Palmiter, R.D. & Brinster, R.L. Tolerance in transgenic mice expressing class II major histocompatibility complex on pancreatic acinar cells. J. Exp. Med.170, 87–104 (1989). CASPubMed Google Scholar
Kearney, E.R., Pape, K.A., Loh, D.Y. & Jenkins, M.K. Visualization of peptide-specific T cell immunity and peripheral tolerance induction in vivo. Immunity1, 327–339 (1994). CASPubMed Google Scholar
Adler, A.J. et al. CD4+ T cell tolerance to parenchymal self-antigens requires presentation by bone marrow-derived antigen-presenting cells. J. Exp. Med.187, 1555–1564 (1998). CASPubMedPubMed Central Google Scholar
Kurts, C. et al. CD4+ T cell help impairs CD8+ T cell deletion induced by cross-presentation of self-antigens and favors autoimmunity. J. Exp. Med.186, 2057–2062 (1997). CASPubMedPubMed Central Google Scholar
Kurts, C., Kosaka, H., Carbone, F.R., Miller, J.F. & Heath, W.R. Class I-restricted cross-presentation of exogenous self-antigens leads to deletion of autoreactive CD8+ T cells. J. Exp. Med.186, 239–245 (1997). CASPubMedPubMed Central Google Scholar
Knoechel, B., Lohr, J., Kahn, E. & Abbas, A.K. The link between lymphocyte deficiency and autoimmunity: roles of endogenous T and B lymphocytes in tolerance. J. Immunol.175, 21–26 (2005). CASPubMed Google Scholar
Vanasek, T.L., Nandiwada, S.L., Jenkins, M.K. & Mueller, D.L. CD25+Foxp3+ regulatory T cells facilitate CD4+ T cell clonal anergy induction during the recovery from lymphopenia. J. Immunol.176, 5880–5889 (2006). CASPubMed Google Scholar
Brown, I.E., Blank, C., Kline, J., Kacha, A.K. & Gajewski, T.F. Homeostatic proliferation as an isolated variable reverses CD8+ T cell anergy and promotes tumor rejection. J. Immunol.177, 4521–4529 (2006). CASPubMed Google Scholar
Tanchot, C., Barber, D.L., Chiodetti, L. & Schwartz, R.H. Adaptive tolerance of CD4+ T cells in vivo: multiple thresholds in response to a constant level of antigen presentation. J. Immunol.167, 2030–2039 (2001). CASPubMed Google Scholar
Marrack, P. & Kappler, J. Control of T cell viability. Annu. Rev. Immunol.22, 765–787 (2004). CASPubMed Google Scholar
Watanabe-Fukunaga, R., Brannan, C.I., Copeland, N.G., Jenkins, N.A. & Nagata, S. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature356, 314–317 (1992). CASPubMed Google Scholar
Bouillet, P. et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science286, 1735–1738 (1999). CASPubMed Google Scholar
Davey, G.M. et al. Peripheral deletion of autoreactive CD8 T cells by cross presentation of self-antigen occurs by a Bcl-2-inhibitable pathway mediated by Bim. J. Exp. Med.196, 947–955 (2002). CASPubMedPubMed Central Google Scholar
Strasser, A., Harris, A.W., Huang, D.C., Krammer, P.H. & Cory, S. Bcl-2 and Fas/APO-1 regulate distinct pathways to lymphocyte apoptosis. EMBO J.14, 6136–6147 (1995). CASPubMedPubMed Central Google Scholar
Weant, A.E. et al. Apoptosis regulators Bim and Fas function concurrently to control autoimmunity and CD8+ T cell contraction. Immunity28, 218–230 (2008). CASPubMed Google Scholar
Hutcheson, J. et al. Combined deficiency of proapoptotic regulators Bim and Fas results in the early onset of systemic autoimmunity. Immunity28, 206–217 (2008). CASPubMed Google Scholar
Hughes, P.D. et al. Apoptosis regulators Fas and Bim cooperate in shutdown of chronic immune responses and prevention of autoimmunity. Immunity28, 197–205 (2008). CASPubMedPubMed Central Google Scholar
Barron, L., Knoechel, B., Lohr, J. & Abbas, A.K. Cutting edge: contributions of apoptosis and anergy to systemic T cell tolerance. J. Immunol.180, 2762–2766 (2008). CASPubMed Google Scholar
Parish, I.A. et al. The molecular signature of CD8+ T cells undergoing deletional tolerance. Blood113, 4575–4585 (2009). CASPubMedPubMed Central Google Scholar
Safford, M. et al. Egr-2 and Egr-3 are negative regulators of T cell activation. Nat. Immunol.6, 472–480 (2005). CASPubMed Google Scholar
Macian, F. et al. Transcriptional mechanisms underlying lymphocyte tolerance. Cell109, 719–731 (2002). CASPubMed Google Scholar
Mondino, A. & Mueller, D.L. mTOR at the crossroads of T cell proliferation and tolerance. Semin. Immunol.19, 162–172 (2007). CASPubMedPubMed Central Google Scholar
DeSilva, D.R., Urdahl, K.B. & Jenkins, M.K. Clonal anergy is induced in vitro by T cell receptor occupancy in the absence of proliferation. J. Immunol.147, 3261–3267 (1991). CASPubMed Google Scholar
Harding, F.A., McArthur, J.G., Gross, J.A., Raulet, D.H. & Allison, J.P. CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature356, 607–609 (1992). CASPubMed Google Scholar
Powell, J.D., Lerner, C.G. & Schwartz, R.H. Inhibition of cell cycle progression by rapamycin induces T cell clonal anergy even in the presence of costimulation. J. Immunol.162, 2775–2784 (1999). CASPubMed Google Scholar
Colombetti, S., Benigni, F., Basso, V. & Mondino, A. Clonal anergy is maintained independently of T cell proliferation. J. Immunol.169, 6178–6186 (2002). CASPubMed Google Scholar
Finck, B.K., Linsley, P.S. & Wofsy, D. Treatment of murine lupus with CTLA4Ig. Science265, 1225–1227 (1994). CASPubMed Google Scholar
Racke, M.K. et al. Distinct roles for B7–1 (CD-80) and B7–2 (CD-86) in the initiation of experimental allergic encephalomyelitis. J. Clin. Invest.96, 2195–2203 (1995). CASPubMedPubMed Central Google Scholar
Miller, S.D. et al. Blockade of CD28/B7–1 interaction prevents epitope spreading and clinical relapses of murine EAE. Immunity3, 739–745 (1995). CASPubMed Google Scholar
Salomon, B. et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity12, 431–440 (2000). CASPubMed Google Scholar
Walunas, T.L. et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity1, 405–413 (1994). CASPubMed Google Scholar
Krummel, M.F. & Allison, J.P. CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J. Exp. Med.183, 2533–2540 (1996). CASPubMed Google Scholar
Waterhouse, P. et al. Lymphoproliferative disorders with early lethality in mice deficient in CTLA-4. Science270, 985–988 (1995). CASPubMed Google Scholar
Tivol, E.A. et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity3, 541–547 (1995). CASPubMed Google Scholar
Fife, B.T., Griffin, M.D., Abbas, A.K., Locksley, R.M. & Bluestone, J.A. Inhibition of T cell activation and autoimmune diabetes using a B cell surface-linked CTLA-4 agonist. J. Clin. Invest.116, 2252–2261 (2006). CASPubMedPubMed Central Google Scholar
Kearney, E.R. et al. Antigen-dependent clonal expansion of a trace population of antigen-specific CD4+ T cells in vivo is dependent on CD28 costimulation and inhibited by CTLA-4. J. Immunol.155, 1032–1036 (1995). CASPubMed Google Scholar
Perez, V.L. et al. Induction of peripheral T cell tolerance in vivo requires CTLA-4 engagement. Immunity6, 411–417 (1997). CASPubMed Google Scholar
Vanasek, T.L., Khoruts, A., Zell, T. & Mueller, D.L. Antagonistic roles for CTLA-4 and the mammalian target of rapamycin in the regulation of clonal anergy: enhanced cell cycle progression promotes recall antigen responsiveness. J. Immunol.167, 5636–5644 (2001). CASPubMed Google Scholar
Greenwald, R.J., Boussiotis, V.A., Lorsbach, R.B., Abbas, A.K. & Sharpe, A.H. CTLA-4 regulates induction of anergy in vivo. Immunity14, 145–155 (2001). CASPubMed Google Scholar
Wing, K. et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science322, 271–275 (2008). CASPubMed Google Scholar
Eggena, M.P. et al. Cooperative roles of CTLA-4 and regulatory T cells in tolerance to an islet cell antigen. J. Exp. Med.199, 1725–1730 (2004). CASPubMedPubMed Central Google Scholar
Nishimura, H., Nose, M., Hiai, H., Minato, N. & Honjo, T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity11, 141–151 (1999). CASPubMed Google Scholar
Freeman, G.J. et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med.192, 1027–1034 (2000). CASPubMedPubMed Central Google Scholar
Keir, M.E. et al. Tissue expression of PD-L1 mediates peripheral T cell tolerance. J. Exp. Med.203, 883–895 (2006). CASPubMedPubMed Central Google Scholar
Fife, B.T. et al. Insulin-induced remission in new-onset NOD mice is maintained by the PD-1-PD-L1 pathway. J. Exp. Med.203, 2737–2747 (2006). CASPubMedPubMed Central Google Scholar
Fife, B.T. et al. Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. Nat. Immunol. advance online publication, doi:10.1038/ni.1790 (27 September 2009).
Probst, H.C., McCoy, K., Okazaki, T., Honjo, T. & van den Broek, M. Resting dendritic cells induce peripheral CD8+ T cell tolerance through PD-1 and CTLA-4. Nat. Immunol.6, 280–286 (2005). CASPubMed Google Scholar