Blobe, G.C., Schiemann, W.P. & Lodish, H.F. Role of transforming growth factor β in human disease. N. Engl. J. Med.342, 1350–1358 (2000). ArticleCASPubMed Google Scholar
Ikushima, H. & Miyazono, K. TGFβ signalling: a complex web in cancer progression. Nat. Rev. Cancer10, 415–424 (2010). ArticleCASPubMed Google Scholar
Yang, L., Pang, Y. & Moses, H.L. TGF-β and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol.31, 220–227 (2010). ArticleCASPubMedPubMed Central Google Scholar
Kulkarni, A.B. et al. Transforming growth factor β1 null mutation in mice causes excessive inflammatory response and early death. Proc. Natl. Acad. Sci. USA90, 770–774 (1993). ArticleCASPubMedPubMed Central Google Scholar
Shull, M.M. et al. Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature359, 693–699 (1992). ArticleCASPubMedPubMed Central Google Scholar
Diebold, R.J. et al. Early-onset multifocal inflammation in the transforming growth factor β1-null mouse is lymphocyte mediated. Proc. Natl. Acad. Sci. USA92, 12215–12219 (1995). ArticleCASPubMedPubMed Central Google Scholar
Bommireddy, R. et al. Elimination of both CD4+ and CD8+ T cells but not B cells eliminates inflammation and prolongs the survival of TGFβ1-deficient mice. Cell. Immunol.232, 96–104 (2004). ArticleCASPubMed Google Scholar
Rudner, L.A. et al. Necroinflammatory liver disease in BALB/c background, TGF-β1-deficient mice requires CD4+ T cells. J. Immunol.170, 4785–4792 (2003). ArticleCASPubMed Google Scholar
Letterio, J.J. et al. Autoimmunity associated with TGF-β1-deficiency in mice is dependent on MHC class II antigen expression. J. Clin. Invest.98, 2109–2119 (1996). ArticleCASPubMedPubMed Central Google Scholar
Gorelik, L. & Flavell, R.A. Abrogation of TGFβ signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity12, 171–181 (2000). ArticleCASPubMed Google Scholar
Lucas, P.J., Kim, S.J., Melby, S.J. & Gress, R.E. Disruption of T cell homeostasis in mice expressing a T cell-specific dominant negative transforming growth factor βII receptor. J. Exp. Med.191, 1187–1196 (2000). ArticleCASPubMedPubMed Central Google Scholar
Li, M.O., Sanjabi, S. & Flavell, R.A. Transforming growth factor-β controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms. Immunity25, 455–471 (2006). ArticleCASPubMed Google Scholar
Marie, J.C., Liggitt, D. & Rudensky, A.Y. Cellular mechanisms of fatal early-onset autoimmunity in mice with the T cell-specific targeting of transforming growth factor-β receptor. Immunity25, 441–454 (2006). ArticleCASPubMed Google Scholar
Fontenot, J.D., Gavin, M.A. & Rudensky, A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol.4, 330–336 (2003). ArticleCASPubMed Google Scholar
Li, M.O., Wan, Y.Y. & Flavell, R.A. T cell-produced transforming growth factor-β1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation. Immunity26, 579–591 (2007). ArticleCASPubMed Google Scholar
Liu, Y. et al. A critical function for TGF-β signaling in the development of natural CD4+CD25+Foxp3+ regulatory T cells. Nat. Immunol.9, 632–640 (2008). ArticleCASPubMed Google Scholar
Marie, J.C., Letterio, J.J., Gavin, M. & Rudensky, A.Y. TGF-β1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. J. Exp. Med.201, 1061–1067 (2005). ArticleCASPubMedPubMed Central Google Scholar
Starr, T.K., Jameson, S.C. & Hogquist, K.A. Positive and negative selection of T cells. Annu. Rev. Immunol.21, 139–176 (2003). ArticleCASPubMed Google Scholar
Sprent, J. & Surh, C.D. Normal T cell homeostasis: the conversion of naive cells into memory-phenotype cells. Nat. Immunol.12, 478–484 (2011). ArticleCASPubMedPubMed Central Google Scholar
Kieper, W.C. et al. Recent immune status determines the source of antigens that drive homeostatic T cell expansion. J. Immunol.174, 3158–3163 (2005). ArticleCASPubMed Google Scholar
Min, B., Yamane, H., Hu-Li, J. & Paul, W.E. Spontaneous and homeostatic proliferation of CD4 T cells are regulated by different mechanisms. J. Immunol.174, 6039–6044 (2005). ArticleCASPubMed Google Scholar
King, C., Ilic, A., Koelsch, K. & Sarvetnick, N. Homeostatic expansion of T cells during immune insufficiency generates autoimmunity. Cell117, 265–277 (2004). ArticleCASPubMed Google Scholar
Krupica, T. Jr., Fry, T.J. & Mackall, C.L. Autoimmunity during lymphopenia: a two-hit model. Clin. Immunol.120, 121–128 (2006). ArticleCASPubMed Google Scholar
Le Campion, A. et al. Lymphopenia-induced spontaneous T-cell proliferation as a cofactor for autoimmune disease development. Blood114, 1784–1793 (2009). ArticleCASPubMed Google Scholar
Hale, J.S., Ames, K.T., Boursalian, T.E. & Fink, P.J. Cutting edge: Rag deletion in peripheral T cells blocks TCR revision. J. Immunol.184, 5964–5968 (2010). ArticleCASPubMed Google Scholar
Zhang, D.J. et al. Selective expression of the Cre recombinase in late-stage thymocytes using the distal promoter of the Lck gene. J. Immunol.174, 6725–6731 (2005). ArticleCASPubMed Google Scholar
El-Asady, R. et al. TGF-β-dependent CD103 expression by CD8+ T cells promotes selective destruction of the host intestinal epithelium during graft-versus-host disease. J. Exp. Med.201, 1647–1657 (2005). ArticleCASPubMedPubMed Central Google Scholar
Feng, T., Wang, L., Schoeb, T.R., Elson, C.O. & Cong, Y. Microbiota innate stimulation is a prerequisite for T cell spontaneous proliferation and induction of experimental colitis. J. Exp. Med.207, 1321–1332 (2010). ArticleCASPubMedPubMed Central Google Scholar
Doisne, J.M. et al. iNKT cell development is orchestrated by different branches of TGF-β signaling. J. Exp. Med.206, 1365–1378 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ouyang, W., Beckett, O., Ma, Q. & Li, M.O. Transforming growth factor-β signaling curbs thymic negative selection promoting regulatory T cell development. Immunity32, 642–653 (2010). ArticleCASPubMedPubMed Central Google Scholar
Daniels, M.A. et al. Thymic selection threshold defined by compartmentalization of Ras/MAPK signalling. Nature444, 724–729 (2006). ArticleCASPubMed Google Scholar
Levéen, P. et al. TGF-β type II receptor-deficient thymocytes develop normally but demonstrate increased CD8+ proliferation in vivo. Blood106, 4234–4240 (2005). ArticlePubMed Google Scholar