Enver, T., Pera, M., Peterson, C. & Andrews, P.W. Stem cell states, fates, and the rules of attraction. Cell Stem Cell4, 387–397 (2009). CASPubMed Google Scholar
Zandi, S., Bryder, D. & Sigvardsson, M. Load and lock: the molecular mechanisms of B-lymphocyte commitment. Immunol. Rev.238, 47–62 (2010). CASPubMed Google Scholar
Nutt, S.L. & Kee, B.L. The transcriptional regulation of B cell lineage commitment. Immunity26, 715–725 (2007). CASPubMed Google Scholar
Georgopoulos, K. Haematopoietic cell-fate decisions, chromatin regulation and ikaros. Nat. Rev. Immunol.2, 162–174 (2002). CASPubMed Google Scholar
Ji, H. et al. Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature467, 338–342 (2010). CASPubMedPubMed Central Google Scholar
Novershtern, N. et al. Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell144, 296–309 (2011). CASPubMedPubMed Central Google Scholar
Chambers, S.M. et al. Hematopoietic fingerprints: an expression database of stem cells and their progeny. Cell Stem Cell1, 578–591 (2007). CASPubMedPubMed Central Google Scholar
Månsson, R. et al. Molecular Evidence for hierarchical transcriptional lineage priming in fetal and adult stem cells and multipotent progenitors. Immunity26, 407–419 (2007). PubMed Google Scholar
Ng, S.Y.-M., Yoshida, T., Zhang, J. & Georgopoulos, K. Genome-wide lineage-specific transcriptional networks underscore Ikaros-dependent lymphoid priming in hematopoietic stem cells. Immunity30, 493–507 (2009). CASPubMedPubMed Central Google Scholar
Hu, M. et al. Multilineage gene expression precedes commitment in the hemopoietic system. Genes Dev.11, 774–785 (1997). CASPubMed Google Scholar
Akashi, K., Traver, D., Miyamoto, T. & Weissman, I.L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature404, 193–197 (2000). CASPubMed Google Scholar
Doulatov, S. et al. Revised map of the human progenitor hierarchy shows the origin of macrophages and dendritic cells in early lymphoid development. Nat. Immunol.11, 585–593 (2010). CASPubMed Google Scholar
Luc, S. et al. The earliest thymic T cell progenitors sustain B cell and myeloid lineage potential. Nat. Immunol.13, 412–419 (2012). CASPubMedPubMed Central Google Scholar
Goardon, N. et al. Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer Cell19, 138–152 (2011). CASPubMed Google Scholar
Adolfsson, J. et al. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell121, 295–306 (2005). CASPubMed Google Scholar
Kohn, L.A. et al. Lymphoid priming in human bone marrow begins before expression of CD10 with upregulation of L-selectin. Nat. Immunol.13, 963–971 (2012). CASPubMedPubMed Central Google Scholar
Notta, F. et al. Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment. Science333, 218–221 (2011). CASPubMed Google Scholar
Hao, Q.-L. et al. Human intrathymic lineage commitment is marked by differential CD7 expression: identification of CD7− lympho-myeloid thymic progenitors. Blood111, 1318–1326 (2008). CASPubMedPubMed Central Google Scholar
Doulatov, S., Notta, F., Laurenti, E. & Dick, J.E. Hematopoiesis: a human perspective. Cell Stem Cell10, 120–136 (2012). CASPubMed Google Scholar
Zhang, Q., Iida, R., Shimazu, T. & Kincade, P.W. Replenishing B lymphocytes in health and disease. Curr. Opin. Immunol.24, 196–203 (2012). CASPubMedPubMed Central Google Scholar
Ernst, J., Nau, G.J. & Bar-Joseph, Z. Clustering short time series gene expression data. Bioinformatics21, i159–i168 (2005). CASPubMed Google Scholar
Ernst, J., Vainas, O., Harbison, C.T., Simon, I. & Bar-Joseph, Z. Reconstructing dynamic regulatory maps. Mol. Syst. Biol.3 (2007).
Itoh, K. et al. Reproducible establishment of hemopoietic supportive stromal cell lines from murine bone marrow. Exp. Hematol.17, 145–153 (1989). CASPubMed Google Scholar
Rossi, M.I. et al. Relatively normal human lymphopoiesis but rapid turnover of newly formed B cells in transplanted nonobese diabetic/SCID mice. J. Immunol.167, 3033–3042 (2001). CASPubMed Google Scholar
Lin, Y.C. et al. A global network of transcription factors, involving E2A, EBF1 and Foxo1, that orchestrates B cell fate. Nat. Immunol.11, 635–643 (2010). CASPubMedPubMed Central Google Scholar
Kawamoto, H., Ikawa, T., Masuda, K., Wada, H. & Katsura, Y. A map for lineage restriction of progenitors during hematopoiesis: the essence of the myeloid-based model. Immunol. Rev.238, 23–36 (2010). CASPubMed Google Scholar
Zhang, J.A., Mortazavi, A., Williams, B.A., Wold, B.J. & Rothenberg, E.V. Dynamic transformations of genome-wide epigenetic marking and transcriptional control establish T cell identity. Cell149, 467–482 (2012). CASPubMedPubMed Central Google Scholar
Santos, P.M. & Borghesi, L. Molecular resolution of the B cell landscape. Curr. Opin. Immunol.23, 163–170 (2011). CASPubMedPubMed Central Google Scholar
Basso, K. & Dalla-Favera, R. Roles of BCL6 in normal and transformed germinal center B cells. Immunol. Rev.247, 172–183 (2012). PubMed Google Scholar
Duy, C. et al. BCL6 is critical for the development of a diverse primary B cell repertoire. J. Exp. Med.207, 1209–1221 (2010). CASPubMedPubMed Central Google Scholar
Schilham, M.W. et al. Defects in cardiac outflow tract formation and pro-B-lymphocyte expansion in mice lacking Sox-4. Nature380, 711–714 (1996). CASPubMed Google Scholar
Liu, P. et al. Bcl11a is essential for normal lymphoid development. Nat. Immunol.4, 525–532 (2003). CASPubMed Google Scholar
Yu, Y. et al. Bcl11a is essential for lymphoid development and negatively regulates p53. J. Exp. Med.209, 2467–2483 (2012). CASPubMedPubMed Central Google Scholar
Zhao, B., Tumaneng, K. & Guan, K.-L. The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat. Cell Biol.13, 877–883 (2011). CASPubMedPubMed Central Google Scholar
Jansson, L. & Larsson, J. Normal hematopoietic stem cell function in mice with enforced expression of the Hippo signaling effector YAP1. PLoS ONE7, e32013 (2012). CASPubMedPubMed Central Google Scholar
Eppert, K. et al. Stem cell gene expression programs influence clinical outcome in human leukemia. Nat. Med.17, 1086–1093 (2011). CASPubMed Google Scholar
Zhang, J. et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature481, 157–163 (2012). CASPubMedPubMed Central Google Scholar
Fan, J.-B. et al. Highly parallel genome-wide expression analysis of single mammalian cells. PLoS ONE7, e30794 (2012). CASPubMedPubMed Central Google Scholar
April, C. et al. Whole-genome gene expression profiling of formalin-fixed, paraffin-embedded tissue samples. PLoS ONE4, e8162 (2009). PubMedPubMed Central Google Scholar
Yeung, K.Y., Haynor, D.R. & Ruzzo, W.L. Validating clustering for gene expression data. Bioinformatics17, 309–318 (2001). CASPubMed Google Scholar
Kel, A.E. et al. MATCH: A tool for searching transcription factor binding sites in DNA sequences. Nucleic Acids Res.31, 3576–3579 (2003). CASPubMedPubMed Central Google Scholar
Chekmenev, D.S., Haid, C. & Kel, A.E. P-Match: transcription factor binding site search by combining patterns and weight matrices. Nucleic Acids Res.33, W432–W437 (2005). CASPubMedPubMed Central Google Scholar
Ci, W. et al. The BCL6 transcriptional program features repression of multiple oncogenes in primary B cells and is deregulated in DLBCL. Blood113, 5536–5548 (2009). CASPubMedPubMed Central Google Scholar
Basso, K. et al. Integrated biochemical and computational approach identifies BCL6 direct target genes controlling multiple pathways in normal germinal center B cells. Blood115, 975–984 (2010). CASPubMedPubMed Central Google Scholar
Moffat, J. et al. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell124, 1283–1298 (2006). CASPubMed Google Scholar
Mazurier, F., Gan, O.I., McKenzie, J.L., Doedens, M. & Dick, J.E. Lentivector-mediated clonal tracking reveals intrinsic heterogeneity in the human hematopoietic stem cell compartment and culture-induced stem cell impairment. Blood103, 545–552 (2004). CASPubMed Google Scholar