Metchnikoff, E. Leçons sur la pathologie comparée de l'inflammation (Masson, 1892).
Aschoff, L. Das reticuloendotheliale system. Erg. Inn. Med. Kinderheilk26, 1–117 (1924). Google Scholar
Sabin, F.R., Doan, C.A. & Cunningham, R.S. Discrimination of two types of phagocytic cells in the connective tissues by the supravital technique. Contrib. Embryol. (Am)16, 125–162 (1925). Google Scholar
Daems, W.T. & Brederoo, P. The fine structure and peroxidase activity of resident and exudate peritoneal macrophages in the guinea pig. The Reticuloendothelial System and Immune Phenomena: Advances in Experimental Medicine and Biology (eds., N. Di Luzio & K. Flemming) 15, 19–31 (1971). ArticleCAS Google Scholar
van Furth, R. et al. The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull. World Health Organ.46, 845–852 (1972). CASPubMedPubMed Central Google Scholar
Parwaresch, M.R. & Wacker, H.H. Origin and kinetics of resident tissue macrophages. Parabiosis studies with radiolabelled leucocytes. Cell Tissue Kinet.17, 25–39 (1984). CASPubMed Google Scholar
Sawyer, R.T., Strausbauch, P.H. & Volkman, A. Resident macrophage proliferation in mice depleted of blood monocytes by strontium-89. Lab. Invest.46, 165–170 (1982). CASPubMed Google Scholar
Czernielewski, J.M. & Demarchez, M. Further evidence for the self-reproducing capacity of Langerhans cells in human skin. J. Invest. Dermatol.88, 17–20 (1987). ArticleCASPubMed Google Scholar
Melnicoff, M.J., Horan, P.K., Breslin, E.W. & Morahan, P.S. Maintenance of peritoneal macrophages in the steady state. J. Leukoc. Biol.44, 367–375 (1988). ArticleCASPubMed Google Scholar
Naito, M. et al. Development, differentiation, and phenotypic heterogeneity of murine tissue macrophages. J. Leukoc. Biol.59, 133–138 (1996). ArticleCASPubMed Google Scholar
Takahashi, K. Development and differentiation of macrophages and related cells: historical review and current concepts. J. Clin. Exp. Hematop.41, 1–31 (2000). Article Google Scholar
Lichanska, A.M. & Hume, D.A. Origins and functions of phagocytes in the embryo. Exp. Hematol.28, 601–611 (2000). ArticleCASPubMed Google Scholar
Chorro, L. et al. Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network. J. Exp. Med.206, 3089–3100 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science330, 841–845 (2010).This study demonstrates the early embryonic origins of adult microglia, which are maintained throughout life by local self renewal. ArticleCASPubMedPubMed Central Google Scholar
Hoeffel, G. et al. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J. Exp. Med.209, 1167–1181 (2012). ArticleCASPubMedPubMed Central Google Scholar
Schulz, C. et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science336, 86–90 (2012).This work is a demonstration of the clear potential for widespread tissue seeding of macrophages from the yolk sac. ArticleCASPubMed Google Scholar
Greter, M. et al. Stroma-derived interleukin-34 controls the development and maintenance of langerhans cells and the maintenance of microglia. Immunity37, 1050–1060 (2012). ArticleCASPubMedPubMed Central Google Scholar
Wang, Y. et al. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat. Immunol.13, 753–760 (2012).Studies in refs.18and19describe an important tissue-specific role for IL-34 in the development and maintenance of Langerhans cells and microglia. ArticleCASPubMedPubMed Central Google Scholar
Yona, S. et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity38, 79–91 (2013). ArticleCASPubMed Google Scholar
Bain, C.C. et al. Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors. Mucosal Immunol.6, 498–510 (2013). ArticleCASPubMed Google Scholar
Kanitakis, J., Petruzzo, P. & Dubernard, J.M. Turnover of epidermal Langerhans' cells. N. Engl. J. Med.351, 2661–2662 (2004). ArticleCASPubMed Google Scholar
Ajami, B., Bennett, J.L., Krieger, C., Tetzlaff, W. & Rossi, F.M. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat. Neurosci.10, 1538–1543 (2007).This work is a demonstration of the autonomy of adult microglia from potential peripheral progenitors. ArticleCASPubMed Google Scholar
Mildner, A. et al. Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat. Neurosci.10, 1544–1553 (2007). ArticleCASPubMed Google Scholar
Capotondo, A. et al. Brain conditioning is instrumental for successful microglia reconstitution following hematopoietic stem cell transplantation. Proc. Natl. Acad. Sci. USA109, 15018–15023 (2012). ArticleCASPubMedPubMed Central Google Scholar
Davies, L.C. et al. A quantifiable proliferative burst of tissue macrophages restores homeostatic macrophage populations after acute inflammation. Eur. J. Immunol.41, 2155–2164 (2011).This is the first demonstration that tissue-resident macrophages in vascular tissues can renew by local proliferation without substantial monocytic input. ArticleCASPubMed Google Scholar
Hashimoto, D. et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity38, 792–804 (2013).This work demonstrates the clear potential for widespread tissue seeding of macrophages from the yolk sac. ArticleCASPubMed Google Scholar
Landsman, L., Varol, C. & Jung, S. Distinct differentiation potential of blood monocyte subsets in the lung. J. Immunol.178, 2000–2007 (2007). ArticleCASPubMed Google Scholar
Hettinger, J. et al. Origin of monocytes and macrophages in a committed progenitor. Nat. Immunol.14, 821–830 (2013). ArticleCASPubMed Google Scholar
Gautier, E.L. et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat. Immunol.13, 1118–1128 (2012). ArticleCASPubMedPubMed Central Google Scholar
Yoshida, H. et al. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature345, 442–444 (1990). ArticleCASPubMed Google Scholar
Hamilton, J.A. Colony-stimulating factors in inflammation and autoimmunity. Nat. Rev. Immunol.8, 533–544 (2008). ArticleCASPubMed Google Scholar
Ryan, G.R. et al. Rescue of the colony-stimulating factor 1 (CSF-1)-nullizygous mouse (Csf1(op)/Csf1(op)) phenotype with a CSF-1 transgene and identification of sites of local CSF-1 synthesis. Blood98, 74–84 (2001). ArticleCASPubMed Google Scholar
Liu, H. et al. The mechanism of shared but distinct CSF-1R signaling by the non-homologous cytokines IL-34 and CSF-1. Biochim. Biophys. Acta1824, 938–945 (2012). ArticleCASPubMedPubMed Central Google Scholar
Chihara, T. et al. IL-34 and M-CSF share the receptor Fms but are not identical in biological activity and signal activation. Cell Death Differ.17, 1917–1927 (2010). ArticleCASPubMed Google Scholar
Hume, D.A. & MacDonald, K.P. Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling. Blood119, 1810–1820 (2012). ArticleCASPubMed Google Scholar
Jenkins, S.J. et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science332, 1284–1288 (2011).This work demonstrates that parasite infection expands tissue-resident macrophages in an IL-4–dependent manner without the need for monocyte recruitment. ArticleCASPubMedPubMed Central Google Scholar
Davies, L.C. et al. Distinct bone marrow-derived and tissue resident macrophage-lineages proliferate at key stages during inflammation. Nat. Commun.4, 1886 (2013).This work definitively demonstrates that peripherally derived inflammatory macrophages proliferate during inflammation. ArticlePubMedCAS Google Scholar
Mantovani, A., Sica, A. & Locati, M. Macrophage polarization comes of age. Immunity23, 344–346 (2005). ArticleCASPubMed Google Scholar
Mantovani, A., Biswas, S.K., Galdiero, M.R., Sica, A. & Locati, M. Macrophage plasticity and polarization in tissue repair and remodelling. J. Pathol.229, 176–185 (2013). ArticleCASPubMed Google Scholar
Gordon, S. & Martinez, F.O. Alternative activation of macrophages: mechanism and functions. Immunity32, 593–604 (2010). ArticleCASPubMed Google Scholar
Ostuni, R. et al. Latent enhancers activated by stimulation in differentiated cells. Cell152, 157–171 (2013). ArticleCASPubMed Google Scholar
Taylor, P.R. et al. Macrophage receptors and immune recognition. Annu. Rev. Immunol.23, 901–944 (2005). ArticleCASPubMed Google Scholar
Akira, S., Takeda, K. & Kaisho, T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol.2, 675–680 (2001). ArticleCASPubMed Google Scholar
Inohara, N. & Nunez, G. NODs: intracellular proteins involved in inflammation and apoptosis. Nat. Rev. Immunol.3, 371–382 (2003). ArticleCASPubMed Google Scholar
Cailhier, J.F. et al. Conditional macrophage ablation demonstrates that resident macrophages initiate acute peritoneal inflammation. J. Immunol.174, 2336–2342 (2005). ArticleCASPubMed Google Scholar
Maus, U.A. et al. Role of resident alveolar macrophages in leukocyte traffic into the alveolar air space of intact mice. Am. J. Physiol. Lung Cell Mol. Physiol.282, L1245–L1252 (2002). ArticleCASPubMed Google Scholar
Ajuebor, M.N. et al. Role of resident peritoneal macrophages and mast cells in chemokine production and neutrophil migration in acute inflammation: evidence for an inhibitory loop involving endogenous IL-10. J. Immunol.162, 1685–1691 (1999). CASPubMed Google Scholar
Rosas, M. et al. The induction of inflammation by dectin-1 in vivo is dependent on myeloid cell programming and the progression of phagocytosis. J. Immunol.181, 3549–3557 (2008). ArticleCASPubMed Google Scholar
Kolaczkowska, E. et al. Resident peritoneal macrophages and mast cells are important cellular sites of COX-1 and COX-2 activity during acute peritoneal inflammation. Arch. Immunol. Ther. Exp. (Warsz.)57, 459–466 (2009). ArticleCAS Google Scholar
Kolaczkowska, E. et al. Resident peritoneal leukocytes are important sources of MMP-9 during zymosan peritonitis: superior contribution of macrophages over mast cells. Immunol. Lett.113, 99–106 (2007). ArticleCASPubMed Google Scholar
Barth, M.W., Hendrzak, J.A., Melnicoff, M.J. & Morahan, P.S. Review of the macrophage disappearance reaction. J. Leukoc. Biol.57, 361–367 (1995). ArticleCASPubMed Google Scholar
Rosas, M., Thomas, B., Stacey, M., Gordon, S. & Taylor, P.R. The myeloid 7/4-antigen defines recently generated inflammatory macrophages and is synonymous with Ly-6B. J. Leukoc. Biol.88, 169–180 (2010). ArticleCASPubMedPubMed Central Google Scholar
Bellingan, G.J. et al. Adhesion molecule-dependent mechanisms regulate the rate of macrophage clearance during the resolution of peritoneal inflammation. J. Exp. Med.196, 1515–1521 (2002). ArticleCASPubMedPubMed Central Google Scholar
Lauder, S.N. et al. Paracetamol reduces influenza-induced immunopathology in a mouse model of infection without compromising virus clearance or the generation of protective immunity. Thorax66, 368–374 (2011). ArticlePubMed Google Scholar
Kirby, A.C., Coles, M.C. & Kaye, P.M. Alveolar macrophages transport pathogens to lung draining lymph nodes. J. Immunol.183, 1983–1989 (2009). ArticleCASPubMed Google Scholar
Jakubzick, C., Tacke, F., Llodra, J., van Rooijen, N. & Randolph, G.J. Modulation of dendritic cell trafficking to and from the airways. J. Immunol.176, 3578–3584 (2006). ArticleCASPubMed Google Scholar
Janssen, W.J. et al. Fas determines differential fates of resident and recruited macrophages during resolution of acute lung injury. Am. J. Respir. Crit. Care Med.184, 547–560 (2011). ArticleCASPubMedPubMed Central Google Scholar
Allen, J.E. & Wynn, T.A. Evolution of Th2 immunity: a rapid repair response to tissue destructive pathogens. PLoS Pathog.7, e1002003 (2011). ArticleCASPubMedPubMed Central Google Scholar
Liddiard, K., Rosas, M., Davies, L.C., Jones, S.A. & Taylor, P.R. Macrophage heterogeneity and acute inflammation. Eur. J. Immunol.41, 2503–2508 (2011). ArticleCASPubMed Google Scholar
Ajami, B., Bennett, J.L., Krieger, C., McNagny, K.M. & Rossi, F.M. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat. Neurosci.14, 1142–1149 (2011). ArticleCASPubMed Google Scholar
Leuschner, F. et al. Rapid monocyte kinetics in acute myocardial infarction are sustained by extramedullary monocytopoiesis. J. Exp. Med.209, 123–137 (2012). ArticleCASPubMedPubMed Central Google Scholar
Cao, C., Lawrence, D.A., Strickland, D.K. & Zhang, L. A specific role of integrin Mac-1 in accelerated macrophage efflux to the lymphatics. Blood106, 3234–3241 (2005). ArticleCASPubMedPubMed Central Google Scholar
Isbel, N.M., Nikolic-Paterson, D.J., Hill, P.A., Dowling, J. & Atkins, R.C. Local macrophage proliferation correlates with increased renal M-CSF expression in human glomerulonephritis. Nephrol. Dial. Transplant.16, 1638–1647 (2001). ArticleCASPubMed Google Scholar
Yang, N. et al. Local macrophage proliferation in human glomerulonephritis. Kidney Int.54, 143–151 (1998). ArticleCASPubMed Google Scholar
Antoniades, C.G. et al. Source and characterization of hepatic macrophages in acetaminophen-induced acute liver failure in humans. Hepatology56, 735–746 (2012). ArticleCASPubMed Google Scholar
Lucas, T. et al. Differential roles of macrophages in diverse phases of skin repair. J. Immunol.184, 3964–3977 (2010). ArticleCASPubMed Google Scholar
Gautier, E.L. et al. Systemic analysis of PPARgamma in mouse macrophage populations reveals marked diversity in expression with critical roles in resolution of inflammation and airway immunity. J. Immunol.189, 2614–2624 (2012). ArticleCASPubMed Google Scholar
Duffield, J.S., Lupher, M., Thannickal, V.J. & Wynn, T.A. Host responses in tissue repair and fibrosis. Annu. Rev. Pathol.8, 241–276 (2013). ArticleCASPubMed Google Scholar
Heredia, J.E. et al. Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration. Cell153, 376–388 (2013). ArticleCASPubMedPubMed Central Google Scholar
Henson, P.M. & Hume, D.A. Apoptotic cell removal in development and tissue homeostasis. Trends Immunol.27, 244–250 (2006). ArticleCASPubMed Google Scholar
London, A., Cohen, M. & Schwartz, M. Microglia and monocyte-derived macrophages: functionally distinct populations that act in concert in CNS plasticity and repair. Front Cell Neurosci7, 34 (2013). ArticleCASPubMedPubMed Central Google Scholar
Shechter, R. et al. Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus. Immunity38, 555–569 (2013). ArticleCASPubMedPubMed Central Google Scholar
Erwig, L.P. & Henson, P.M. Clearance of apoptotic cells by phagocytes. Cell Death Differ.15, 243–250 (2008). ArticleCASPubMed Google Scholar
Manderson, A.P., Botto, M. & Walport, M.J. The role of complement in the development of systemic lupus erythematosus. Annu. Rev. Immunol.22, 431–456 (2004). ArticleCASPubMed Google Scholar
Uderhardt, S. et al. 12/15-lipoxygenase orchestrates the clearance of apoptotic cells and maintains immunologic tolerance. Immunity36, 834–846 (2012).This work demonstrates that tissue-resident macrophages can actively divert apoptotic cell clearance to themselves rather than recruited inflammatory monocyte-derived cells. ArticleCASPubMed Google Scholar
Hanayama, R. et al. Autoimmune disease and impaired uptake of apoptotic cells in MFG-E8-deficient mice. Science304, 1147–1150 (2004). ArticleCASPubMed Google Scholar
Kobayashi, N. et al. TIM-1 and TIM-4 glycoproteins bind phosphatidylserine and mediate uptake of apoptotic cells. Immunity27, 927–940 (2007). ArticleCASPubMedPubMed Central Google Scholar
Miyanishi, M. et al. Identification of Tim4 as a phosphatidylserine receptor. Nature450, 435–439 (2007). ArticleCASPubMed Google Scholar
Seitz, H.M., Camenisch, T.D., Lemke, G., Earp, H.S. & Matsushima, G.K. Macrophages and dendritic cells use different Axl/Mertk/Tyro3 receptors in clearance of apoptotic cells. J. Immunol.178, 5635–5642 (2007). ArticleCASPubMed Google Scholar
Scott, R.S. et al. Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature411, 207–211 (2001). ArticleCASPubMed Google Scholar
Yoshida, H. et al. Phosphatidylserine-dependent engulfment by macrophages of nuclei from erythroid precursor cells. Nature437, 754–758 (2005). ArticleCASPubMed Google Scholar
Nagata, S. Autoimmune diseases caused by defects in clearing dead cells and nuclei expelled from erythroid precursors. Immunol. Rev.220, 237–250 (2007). ArticleCASPubMed Google Scholar
Chow, A. et al. CD169+ macrophages provide a niche promoting erythropoiesis under homeostasis and stress. Nat. Med.19, 429–436 (2013). ArticleCASPubMedPubMed Central Google Scholar
Kawane, K. et al. Requirement of DNase II for definitive erythropoiesis in the mouse fetal liver. Science292, 1546–1549 (2001). ArticleCASPubMed Google Scholar
Yoshida, H., Okabe, Y., Kawane, K., Fukuyama, H. & Nagata, S. Lethal anemia caused by interferon-beta produced in mouse embryos carrying undigested DNA. Nat. Immunol.6, 49–56 (2005). ArticleCASPubMed Google Scholar
Kristiansen, M. et al. Identification of the haemoglobin scavenger receptor. Nature409, 198–201 (2001). ArticleCASPubMed Google Scholar
Hvidberg, V. et al. Identification of the receptor scavenging hemopexin-heme complexes. Blood106, 2572–2579 (2005). ArticleCASPubMed Google Scholar
Satoh, T. et al. Critical role of Trib1 in differentiation of tissue-resident M2-like macrophages. Nature495, 524–528 (2013). ArticleCASPubMed Google Scholar
Wu, D. et al. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science332, 243–247 (2011). ArticleCASPubMedPubMed Central Google Scholar
Odegaard, J.I. et al. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature447, 1116–1120 (2007). ArticleCASPubMedPubMed Central Google Scholar
Kang, K. et al. Adipocyte-derived Th2 cytokines and myeloid PPARdelta regulate macrophage polarization and insulin sensitivity. Cell Metab.7, 485–495 (2008). ArticleCASPubMedPubMed Central Google Scholar
Odegaard, J.I. et al. Alternative M2 activation of Kupffer cells by PPARdelta ameliorates obesity-induced insulin resistance. Cell Metab.7, 496–507 (2008). ArticleCASPubMedPubMed Central Google Scholar
Nguyen, K.D. et al. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature480, 104–108 (2011).This is an interesting demonstration of the importance of alternatively activated macrophages in the physiological response to cold. ArticleCASPubMedPubMed Central Google Scholar
Mebius, R.E. & Kraal, G. Structure and function of the spleen. Nat. Rev. Immunol.5, 606–616 (2005). ArticleCASPubMed Google Scholar
den Haan, J.M. & Kraal, G. Innate immune functions of macrophage subpopulations in the spleen. J. Innate Immun.4, 437–445 (2012). ArticlePubMedPubMed Central Google Scholar
Kohyama, M. et al. Role for Spi-C in the development of red pulp macrophages and splenic iron homeostasis. Nature457, 318–321 (2009).This is a demonstration of the restriction of Spi-C expression to red pulp macrophages and its selective importance for their red pulp macrophage development and hence for splenic iron homeostasis. ArticleCASPubMed Google Scholar
Geijtenbeek, T.B. et al. Marginal zone macrophages express a murine homologue of DC-SIGN that captures blood-borne antigens in vivo. Blood100, 2908–2916 (2002). ArticleCASPubMed Google Scholar
Elomaa, O. et al. Cloning of a novel bacteria-binding receptor structurally related to scavenger receptors and expressed in a subset of macrophages. Cell80, 603–609 (1995). ArticleCASPubMed Google Scholar
Kang, Y.S. et al. The C-type lectin SIGN-R1 mediates uptake of the capsular polysaccharide of Streptococcus pneumoniae in the marginal zone of mouse spleen. Proc. Natl. Acad. Sci. USA101, 215–220 (2004). ArticleCASPubMed Google Scholar
Karlsson, M.C. et al. Macrophages control the retention and trafficking of B lymphocytes in the splenic marginal zone. J. Exp. Med.198, 333–340 (2003). ArticleCASPubMedPubMed Central Google Scholar
A-Gonzalez, N. et al. The nuclear receptor LXRα controls the functional specialization of splenic macrophages. Nat. Immunol.14, 831–839 (2013). ArticleCASPubMedPubMed Central Google Scholar
Eloranta, M.L. & Alm, G.V. Splenic marginal metallophilic macrophages and marginal zone macrophages are the major interferon-alpha/beta producers in mice upon intravenous challenge with herpes simplex virus. Scand. J. Immunol.49, 391–394 (1999). ArticleCASPubMed Google Scholar
Klaas, M. et al. Sialoadhesin promotes rapid proinflammatory and type I IFN responses to a sialylated pathogen, Campylobacter jejuni. J. Immunol.189, 2414–2422 (2012). ArticleCASPubMedPubMed Central Google Scholar
Honke, N. et al. Enforced viral replication activates adaptive immunity and is essential for the control of a cytopathic virus. Nat. Immunol.13, 51–57 (2012).This paper describes an interesting selective role for splenic metallophilic macrophages as a potential infectious viral reservoir that drives adaptive immunity. ArticleCAS Google Scholar
Backer, R. et al. Effective collaboration between marginal metallophilic macrophages and CD8+ dendritic cells in the generation of cytotoxic T cells. Proc. Natl. Acad. Sci. USA107, 216–221 (2010). ArticleCASPubMed Google Scholar
Khan, T.N., Wong, E.B., Soni, C. & Rahman, Z.S. Prolonged apoptotic cell accumulation in germinal centers of Mer-deficient mice causes elevated B cell and CD4+ Th cell responses leading to autoantibody production. J. Immunol.190, 1433–1446 (2013). ArticleCASPubMed Google Scholar
Carlin, L.M. et al. Nr4a1-dependent Ly6Clow monocytes monitor endothelial cells and orchestrate their disposal. Cell153, 362–375 (2013). ArticleCASPubMedPubMed Central Google Scholar
Chow, A. et al. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J. Exp. Med.208, 261–271 (2011). ArticleCASPubMedPubMed Central Google Scholar
Quinn, J.M. et al. Calcitonin receptor antibodies in the identification of osteoclasts. Bone25, 1–8 (1999). ArticleCASPubMed Google Scholar
Sadahira, Y. & Mori, M. Role of the macrophage in erythropoiesis. Pathol. Int.49, 841–848 (1999). ArticleCASPubMed Google Scholar
Paolicelli, R.C. et al. Synaptic pruning by microglia is necessary for normal brain development. Science333, 1456–1458 (2011). ArticleCASPubMed Google Scholar
Prinz, M., Priller, J., Sisodia, S.S. & Ransohoff, R.M. Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. Nat. Neurosci.14, 1227–1235 (2011). ArticleCASPubMed Google Scholar
Zigmond, E. & Jung, S. Intestinal macrophages: well educated exceptions from the rule. Trends Immunol.34, 162–168 (2013). ArticleCASPubMed Google Scholar
Klein, I. et al. Kupffer cell heterogeneity: functional properties of bone marrow derived and sessile hepatic macrophages. Blood110, 4077–4085 (2007). ArticleCASPubMedPubMed Central Google Scholar
Murphy, J., Summer, R., Wilson, A.A., Kotton, D.N. & Fine, A. The prolonged life-span of alveolar macrophages. Am. J. Respir. Cell Mol. Biol.38, 380–385 (2008). ArticleCASPubMedPubMed Central Google Scholar
Bedoret, D. et al. Lung interstitial macrophages alter dendritic cell functions to prevent airway allergy in mice. J. Clin. Invest.119, 3723–3738 (2009). ArticleCASPubMedPubMed Central Google Scholar
Taylor, P.R. et al. The beta-glucan receptor, dectin-1, is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages. J. Immunol.169, 3876–3882 (2002). ArticleCASPubMed Google Scholar
Dioszeghy, V. et al. 12/15-Lipoxygenase regulates the inflammatory response to bacterial products in vivo. J. Immunol.181, 6514–6524 (2008). ArticleCASPubMed Google Scholar
Cailhier, J.F. et al. Resident pleural macrophages are key orchestrators of neutrophil recruitment in pleural inflammation. Am. J. Respir. Crit. Care Med.173, 540–547 (2006). ArticleCASPubMed Google Scholar
Chorro, L. & Geissmann, F. Development and homeostasis of 'resident' myeloid cells: the case of the Langerhans cell. Trends Immunol.31, 438–445 (2010). ArticleCASPubMed Google Scholar
Merad, M., Ginhoux, F. & Collin, M. Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat. Rev. Immunol.8, 935–947 (2008). ArticleCASPubMed Google Scholar
Dupasquier, M. et al. The dermal microenvironment induces the expression of the alternative activation marker CD301/mMGL in mononuclear phagocytes, independent of IL-4/IL-13 signaling. J. Leukoc. Biol.80, 838–849 (2006). ArticleCASPubMed Google Scholar
Taylor, P.R. et al. Dectin-2 is predominantly myeloid restricted and exhibits unique activation-dependent expression on maturing inflammatory monocytes elicited in vivo. Eur. J. Immunol.35, 2163–2174 (2005). ArticleCASPubMed Google Scholar
Hacker, C. et al. Transcriptional profiling identifies Id2 function in dendritic cell development. Nat. Immunol.4, 380–386 (2003). ArticleCASPubMed Google Scholar
Fainaru, O. et al. Runx3 regulates mouse TGF-beta-mediated dendritic cell function and its absence results in airway inflammation. EMBO J.23, 969–979 (2004). ArticleCASPubMedPubMed Central Google Scholar