The miR-126–VEGFR2 axis controls the innate response to pathogen-associated nucleic acids (original) (raw)
McCartney, S.A. & Colonna, M. Viral sensors: diversity in pathogen recognition. Immunol. Rev.227, 87–94 (2009). ArticleCASPubMed Google Scholar
Kawai, T. & Akira, S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity34, 637–650 (2011). ArticleCASPubMed Google Scholar
Chevrier, N. et al. Systematic discovery of TLR signaling components delineates viral-sensing circuits. Cell147, 853–867 (2011). ArticleCASPubMed Google Scholar
Yang, K. et al. Human TLR-7-, -8-, and -9-mediated induction of IFN-α/β and -λ is IRAK-4 dependent and redundant for protective immunity to viruses. Immunity23, 465–478 (2005). ArticleCASPubMedPubMed Central Google Scholar
Kumar, H., Kawai, T. & Akira, S. Toll-like receptors and innate immunity. Biochem. Biophys. Res. Commun.388, 621–625 (2009). ArticleCASPubMed Google Scholar
Baltimore, D. et al. MicroRNAs: new regulators of immune cell development and function. Nat. Immunol.9, 839–845 (2008). ArticleCASPubMed Google Scholar
Taganov, K.D., Boldin, M.P., Chang, K.-J. & Baltimore, D. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl. Acad. Sci. USA103, 12481–12486 (2006). ArticleCASPubMedPubMed Central Google Scholar
O'Connell, R.M. et al. MicroRNA-155 is induced during the macrophage inflammatory response. Proc. Natl. Acad. Sci. USA104, 1604–1609 (2007). ArticleCASPubMedPubMed Central Google Scholar
Brown, B.D. et al. Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nat. Biotechnol.25, 1457–1467 (2007). ArticleCASPubMed Google Scholar
O'Connell, R.M., Chaudhuri, A.A., Rao, D.S. & Baltimore, D. Inositol phosphatase SHIP1 is a primary target of miR-155. Proc. Natl. Acad. Sci. USA106, 7113–7118 (2009). ArticleCASPubMedPubMed Central Google Scholar
Zhou, H. et al. miR-155 and its star-form partner miR-155* cooperatively regulate type I interferon production by human plasmacytoid dendritic cells. Blood116, 5885–5894 (2010). ArticleCASPubMed Google Scholar
O'Neill, L.A., Sheedy, F.J. & McCoy, C.E. MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nat. Rev. Immunol.11, 163–175 (2011). ArticleCASPubMed Google Scholar
Kuhnert, F. et al. Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126. Development135, 3989–3993 (2008). ArticleCASPubMed Google Scholar
Brown, B.D. et al. In vivo administration of lentiviral vectors triggers a type I interferon response that restricts hepatocyte gene transfer and promotes vector clearance. Blood109, 2797–2805 (2007). ArticleCASPubMed Google Scholar
Beignon, A.-S. et al. Endocytosis of HIV-1 activates plasmacytoid dendritic cells via Toll-like receptor-viral RNA interactions. J. Clin. Invest.115, 3265–3275 (2005). ArticleCASPubMedPubMed Central Google Scholar
Meylan, P.R., Guatelli, J.C., Munis, J.R., Richman, D.D. & Kornbluth, R.S. Mechanisms for the inhibition of HIV replication by interferons-α, -β, and -γ in primary human macrophages. Virology193, 138–148 (1993). ArticleCASPubMed Google Scholar
Reizis, B., Bunin, A., Ghosh, H.S., Lewis, K.L. & Sisirak, V. Plasmacytoid dendritic cells: recent progress and open questions. Annu. Rev. Immunol.29, 163–183 (2011). ArticleCASPubMedPubMed Central Google Scholar
Colonna, M., Trinchieri, G. & Liu, Y.-J. Plasmacytoid dendritic cells in immunity. Nat. Immunol.5, 1219–1226 (2004). ArticleCASPubMed Google Scholar
Naik, S.H. et al. Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nat. Immunol.8, 1217–1226 (2007). ArticleCASPubMed Google Scholar
Cella, M. et al. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat. Med.5, 919–923 (1999). ArticleCASPubMed Google Scholar
Asselin-Paturel, C. et al. Type I interferon dependence of plasmacytoid dendritic cell activation and migration. J. Exp. Med.201, 1157–1167 (2005). ArticleCASPubMedPubMed Central Google Scholar
Vitour, D. & Meurs, E.F. Regulation of interferon production by RIG-I and LGP2: a lesson in self-control. Sci. STKE2007, pe20 (2007). ArticlePubMed Google Scholar
Krug, A. et al. IFN-producing cells respond to CXCR3 ligands in the presence of CXCL12 and secrete inflammatory chemokines upon activation. J. Immunol.169, 6079–6083 (2002). ArticleCASPubMed Google Scholar
Li, H.S. et al. The signal transducers STAT5 and STAT3 control expression of Id2 and E2–2 during dendritic cell development. Blood120, 4363–4373 (2012). ArticleCASPubMedPubMed Central Google Scholar
van de Laar, L. et al. PI3K-PKB hyperactivation augments human plasmacytoid dendritic cell development and function. Blood120, 4982–4991 (2012). ArticleCASPubMed Google Scholar
Cao, W. et al. Toll-like receptor-mediated induction of type I interferon in plasmacytoid dendritic cells requires the rapamycin-sensitive PI(3)K-mTOR-p70S6K pathway. Nat. Immunol.9, 1157–1164 (2008). ArticleCASPubMedPubMed Central Google Scholar
Quinn, T.P., Peters, K.G., De Vries, C., Ferrara, N. & Williams, L.T. Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium. Proc. Natl. Acad. Sci. USA90, 7533–7537 (1993). ArticleCASPubMedPubMed Central Google Scholar
Ding, B.-S. et al. Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature468, 310–315 (2010). ArticleCASPubMedPubMed Central Google Scholar
Ghosh, H.S., Cisse, B., Bunin, A., Lewis, K.L. & Reizis, B. Continuous expression of the transcription factor e2–2 maintains the cell fate of mature plasmacytoid dendritic cells. Immunity33, 905–916 (2010). ArticleCASPubMedPubMed Central Google Scholar
Grouard, G. et al. The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand. J. Exp. Med.185, 1101–1111 (1997). ArticleCASPubMedPubMed Central Google Scholar
Siegal, F.P. et al. The nature of the principal type 1 interferon-producing cells in human blood. Science284, 1835–1837 (1999). ArticleCASPubMed Google Scholar
Stepkowski, S.M., Chen, W., Ross, J.A., Nagy, Z.S. & Kirken, R.A. STAT3: an important regulator of multiple cytokine functions. Transplantation85, 1372–1377 (2008). ArticleCASPubMed Google Scholar
Plas, D.R. & Thomas, G. Tubers and tumors: rapamycin therapy for benign and malignant tumors. Curr. Opin. Cell Biol.21, 230–236 (2009). ArticleCASPubMed Google Scholar
Guiducci, C. et al. PI3K is critical for the nuclear translocation of IRF-7 and type I IFN production by human plasmacytoid predendritic cells in response to TLR activation. J. Exp. Med.205, 315–322 (2008). ArticleCASPubMedPubMed Central Google Scholar
Conrad, C. et al. Plasmacytoid dendritic cells promote immunosuppression in ovarian cancer via ICOS costimulation of Foxp3+ T-regulatory cells. Cancer Res.72, 5240–5249 (2012). ArticleCASPubMedPubMed Central Google Scholar
Ferrara, N., Mass, R.D., Campa, C. & Kim, R. Targeting VEGF-A to treat cancer and age-related macular degeneration. Annu. Rev. Med.58, 491–504 (2007). ArticleCASPubMed Google Scholar
Nestle, F.O. et al. Plasmacytoid predendritic cells initiate psoriasis through interferon-alpha production. J. Exp. Med.202, 135–143 (2005). ArticleCASPubMedPubMed Central Google Scholar
Lande, R. et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature449, 564–569 (2007). ArticleCASPubMed Google Scholar
Guiducci, C. et al. Autoimmune skin inflammation is dependent on plasmacytoid dendritic cell activation by nucleic acids via TLR7 and TLR9. J. Exp. Med.207, 2931–2942 (2010). ArticleCASPubMedPubMed Central Google Scholar
Diana, J. et al. Crosstalk between neutrophils, B-1a cells and plasmacytoid dendritic cells initiates autoimmune diabetes. Nat. Med.19, 65–73 (2013). ArticleCASPubMed Google Scholar
Banchereau, J. & Pascual, V. Type I interferon in systemic lupus erythematosus and other autoimmune diseases. Immunity25, 383–392 (2006). ArticleCASPubMed Google Scholar
Wang, H., Peng, W., Ouyang, X., Li, W. & Dai, Y. Circulating microRNAs as candidate biomarkers in patients with systemic lupus erythematosus. Transl. Res.160, 198–206 (2012). ArticleCASPubMed Google Scholar
Janssen, H.L.A. et al. Treatment of HCV infection by targeting microRNA. N. Engl. J. Med.368, 1685–1694 (2013). ArticleCASPubMed Google Scholar
O'Connell, R.M. et al. MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity33, 607–619 (2010). ArticleCASPubMedPubMed Central Google Scholar
Agudo, J. et al. A TLR and non-TLR mediated innate response to lentiviruses restricts hepatocyte entry and can be ameliorated by pharmacological blockade. Mol. Ther.20, 2257–2267 (2012). ArticleCASPubMedPubMed Central Google Scholar