Jain, R. K., Duda, D. G., Clark, J. W. & Loeffler, J. S. Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nature Clin. Pract. Oncol.3, 24–40 (2006). ArticleCAS Google Scholar
Ferrara, N. VEGF-A: a critical regulator of blood vessel growth. Eur. Cytokine Netw.20, 158–163 (2009). ArticlePubMedCAS Google Scholar
Nagy, J. A., Dvorak, A. M. & Dvorak, H. F. VEGF-A and the induction of pathological angiogenesis. Annu. Rev. Pathol.2, 251–275 (2007). ArticlePubMedCAS Google Scholar
Neufeld, G. & Kessler, O. The semaphorins: versatile regulators of tumour progression and tumour angiogenesis. Nature Rev. Cancer8, 632–645 (2008). ArticleCAS Google Scholar
Phng, L. K. & Gerhardt, H. Angiogenesis: a team effort coordinated by Notch. Dev. Cell16, 196–208 (2009). ArticlePubMedCAS Google Scholar
Jain, R. K. et al. Biomarkers of response and resistance to antiangiogenic therapy. Nature Rev. Clin. Oncol.6, 327–338 (2009). This review highlights the importance of various types of biomarker to personalize anti-angiogenic medicine, distinguish responders from non-responders and monitor treatment efficacy and adverse effects. ArticleCAS Google Scholar
Buysschaert, I., Schmidt, T., Roncal, C., Carmeliet, P. & Lambrechts, D. Genetics, epigenetics and pharmaco-(epi)genomics in angiogenesis. J. Cell. Mol. Med.12, 2533–2551 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Tvorogov, D. et al. Effective suppression of vascular network formation by combination of antibodies blocking VEGFR ligand binding and receptor dimerization. Cancer Cell18, 630–640 (2010). ArticlePubMedCAS Google Scholar
Tammela, T. & Alitalo, K. Lymphangiogenesis: molecular mechanisms and future promise. Cell140, 460–476 (2010). ArticlePubMedCAS Google Scholar
Herbert, S. P. et al. Arterial–venous segregation by selective cell sprouting: an alternative mode of blood vessel formation. Science326, 294–298 (2009). ArticleADSPubMedPubMed CentralCAS Google Scholar
Fischer, C., Mazzone, M., Jonckx, B. & Carmeliet, P. FLT1 and its ligands VEGFB and PlGF: drug targets for anti-angiogenic therapy? Nature Rev. Cancer8, 942–956 (2008). ArticleCAS Google Scholar
Carmeliet, P. et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nature Med.7, 575–583 (2001). ArticlePubMedCAS Google Scholar
Rolny, C. et al. HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF. Cancer Cell19, 31–44 (2011). ArticlePubMedCAS Google Scholar
Van de Veire, S. et al. Further pharmacological and genetic evidence for the efficacy of PlGF inhibition in cancer and eye disease. Cell141, 178–190 (2010). ArticlePubMedCAS Google Scholar
Bais, C. et al. PlGF blockade does not inhibit angiogenesis during primary tumor growth. Cell141, 166–177 (2010). ArticlePubMedCAS Google Scholar
Hagberg, C. E. et al. Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature464, 917–921 (2010). ArticleADSPubMedCAS Google Scholar
Bry, M. et al. Vascular endothelial growth factor-B acts as a coronary growth factor in transgenic rats without inducing angiogenesis, vascular leak, or inflammation. Circulation122, 1725–1733 (2010). ArticlePubMedCAS Google Scholar
Schwartz, J. D., Rowinsky, E. K., Youssoufian, H., Pytowski, B. & Wu, Y. Vascular endothelial growth factor receptor-1 in human cancer. Cancer116, 1027–1032 (2010). ArticlePubMedCAS Google Scholar
Lichtenberger, B. M. et al. Autocrine VEGF signaling synergizes with EGFR in tumor cells to promote epithelial cancer development. Cell140, 268–279 (2010). ArticlePubMedCAS Google Scholar
Duda, D. G. & Jain, R. K. Premetastatic lung 'niche': is vascular endothelial growth factor receptor 1 activation required? Cancer Res.70, 5670–5673 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Hellberg, C., Ostman, A. & Heldin, C. H. PDGF and vessel maturation. Recent Results Cancer Res.180, 103–114 (2010). ArticlePubMedCAS Google Scholar
Gaengel, K., Genove, G., Armulik, A. & Betsholtz, C. Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler. Thromb. Vasc. Biol.29, 630–638 (2009). This article discusses the role of pericytes in tumour angiogenesis, and highlights the possible pro-metastatic effects of blocking pericyte coverage. ArticlePubMedCAS Google Scholar
Quaegebeur, A., Segura, I. & Carmeliet, P. Pericytes: blood–brain barrier safeguards against neurodegeneration? Neuron68, 321–323 (2010). ArticlePubMedCAS Google Scholar
Song, S., Ewald, A. J., Stallcup, W., Werb, Z. & Bergers, G. PDGFRβ+ perivascular progenitor cells in tumours regulate pericyte differentiation and vascular survival. Nature Cell Biol.7, 870–879 (2005). ArticlePubMedCAS Google Scholar
Bergers, G., Song, S., Meyer-Morse, N., Bergsland, E. & Hanahan, D. Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J. Clin. Invest.111, 1287–1295 (2003). ArticlePubMedPubMed CentralCAS Google Scholar
McCarty, M. F. et al. Overexpression of PDGF-BB decreases colorectal and pancreatic cancer growth by increasing tumor pericyte content. J. Clin. Invest.117, 2114–2122 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Sennino, B. et al. Cellular source and amount of vascular endothelial growth factor and platelet-derived growth factor in tumors determine response to angiogenesis inhibitors. Cancer Res.69, 4527–4536 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Nisancioglu, M. H., Betsholtz, C. & Genove, G. The absence of pericytes does not increase the sensitivity of tumor vasculature to vascular endothelial growth factor-A blockade. Cancer Res.70, 5109–5115 (2010). ArticlePubMedCAS Google Scholar
Gerhardt, H. & Semb, H. Pericytes: gatekeepers in tumour cell metastasis? J. Mol. Med.86, 135–144 (2008). ArticlePubMed Google Scholar
Lebrin, F. et al. Thalidomide stimulates vessel maturation and reduces epistaxis in individuals with hereditary hemorrhagic telangiectasia. Nature Med.16, 420–428 (2010). ArticleADSPubMedCAS Google Scholar
Crawford, Y. et al. PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell15, 21–34 (2009). ArticlePubMedCAS Google Scholar
di Tomaso, E. et al. PDGF-C induces maturation of blood vessels in a model of glioblastoma and attenuates the response to anti-VEGF treatment. PLoS ONE4, e5123 (2009). ArticleADSPubMedPubMed CentralCAS Google Scholar
Pardali, E., Goumans, M. J. & ten Dijke, P. Signaling by members of the TGF-β family in vascular morphogenesis and disease. Trends Cell Biol.20, 556–567 (2010). ArticlePubMedCAS Google Scholar
Beenken, A. & Mohammadi, M. The FGF family: biology, pathophysiology and therapy. Nature Rev. Drug Discov.8, 235–253 (2009). ArticleCAS Google Scholar
Bergers, G. & Hanahan, D. Modes of resistance to anti-angiogenic therapy. Nature Rev. Cancer8, 592–603 (2008). ArticleCAS Google Scholar
Augustin, H. G., Koh, G. Y., Thurston, G. & Alitalo, K. Control of vascular morphogenesis and homeostasis through the angiopoietin–Tie system. Nature Rev. Mol. Cell Biol.10, 165–177 (2009). ArticleCAS Google Scholar
Saharinen, P. et al. Angiopoietins assemble distinct Tie2 signalling complexes in endothelial cell–cell and cell–matrix contacts. Nature Cell Biol.10, 527–537 (2008). ArticlePubMedCAS Google Scholar
De Palma, M. et al. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell8, 211–226 (2005). ArticlePubMedCAS Google Scholar
Falcon, B. L. et al. Contrasting actions of selective inhibitors of angiopoietin-1 and angiopoietin-2 on the normalization of tumor blood vessels. Am. J. Pathol.175, 2159–2170 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Koh, Y. J. et al. Double antiangiogenic protein, DAAP, targeting VEGF-A and angiopoietins in tumor angiogenesis, metastasis, and vascular leakage. Cancer Cell18, 171–184 (2010). ArticlePubMedCAS Google Scholar
Benedito, R. et al. The Notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell137, 1124–1135 (2009). ArticlePubMedCAS Google Scholar
Phng, L. K. et al. Nrarp coordinates endothelial Notch and Wnt signaling to control vessel density in angiogenesis. Dev. Cell16, 70–82 (2009). ArticlePubMedCASPubMed Central Google Scholar
Jakobsson, L. et al. Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nature Cell Biol.12, 943–953 (2010). ArticlePubMedCAS Google Scholar
Thurston, G., Noguera-Troise, I. & Yancopoulos, G. D. The Delta paradox: DLL4 blockade leads to more tumour vessels but less tumour growth. Nature Rev. Cancer7, 327–331 (2007). References 10 and 55 discuss the molecular model of vessel branching, and the role of DLL4 and NOTCH signalling in tip- and stalk-cell formation. ArticleCAS Google Scholar
Corada, M. et al. The Wnt/β-catenin pathway modulates vascular remodeling and specification by upregulating Dll4/Notch signaling. Dev. Cell18, 938–949 (2010). ArticlePubMedCASPubMed Central Google Scholar
Dejana, E. The role of Wnt signaling in physiological and pathological angiogenesis. Circ. Res.107, 943–952 (2010). ArticlePubMedCAS Google Scholar
Desgrosellier, J. S. & Cheresh, D. A. Integrins in cancer: biological implications and therapeutic opportunities. Nature Rev. Cancer10, 9–22 (2010). ArticleCAS Google Scholar
Hodivala-Dilke, K. αvβ3 integrin and angiogenesis: a moody integrin in a changing environment. Curr. Opin. Cell Biol.20, 514–519 (2008). ArticlePubMedCAS Google Scholar
Contois, L., Akalu, A. & Brooks, P. C. Integrins as 'functional hubs' in the regulation of pathological angiogenesis. Semin. Cancer Biol.19, 318–328 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Deryugina, E. I. & Quigley, J. P. Pleiotropic roles of matrix metalloproteinases in tumor angiogenesis: contrasting, overlapping and compensatory functions. Biochim. Biophys. Acta1803, 103–120 (2010). ArticlePubMedCAS Google Scholar
Bergers, G. et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nature Cell Biol.2, 737–744 (2000). ArticlePubMedCAS Google Scholar
Du, R. et al. HIF1α induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell13, 206–220 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Heissig, B. et al. Role of neutrophil-derived matrix metalloproteinase-9 in tissue regeneration. Histol. Histopathol.25, 765–770 (2010). PubMedCAS Google Scholar
Heissig, B. et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell109, 625–637 (2002). ArticlePubMedPubMed CentralCAS Google Scholar
Blasi, F. & Carmeliet, P. uPAR: a versatile signalling orchestrator. Nature Rev. Mol. Cell Biol.3, 932–943 (2002). ArticleCAS Google Scholar
Pries, A. R., Hopfner, M., le Noble, F., Dewhirst, M. W. & Secomb, T. W. The shunt problem: control of functional shunting in normal and tumour vasculature. Nature Rev. Cancer10, 587–593 (2010). ArticleCAS Google Scholar
Dejana, E., Tournier-Lasserve, E. & Weinstein, B. M. The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev. Cell16, 209–221 (2009). ArticlePubMedCAS Google Scholar
Strilic, B. et al. The molecular basis of vascular lumen formation in the developing mouse aorta. Dev. Cell17, 505–515 (2009). ArticlePubMedCAS Google Scholar
Mazzone, M. et al. Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell136, 839–851 (2009). This article provides genetic evidence of a role for the oxygen-sensor PHD2 in tumour vessel normalization through its regulation of endothelial cell phalanx formation. ArticlePubMedPubMed CentralCAS Google Scholar
Duda, D. G. et al. CXCL12 (SDF1α) — CXCR4/CXCR7 pathway inhibition: an emerging sensitizer for anti-cancer therapies? Clin. Cancer Res.17, 2074–2080 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Visentin, B. et al. Validation of an anti-sphingosine-1-phosphate antibody as a potential therapeutic in reducing growth, invasion, and angiogenesis in multiple tumor lineages. Cancer Cell9, 225–238 (2006). ArticlePubMedCAS Google Scholar
Escudier, B. et al. Phase III trial of bevacizumab plus interferon alfa-2a in patients with metastatic renal cell carcinoma (AVOREN): final analysis of overall survival. J. Clin. Oncol.28, 2144–2150 (2010). ArticlePubMedCAS Google Scholar
Allegra, C. J. et al. Phase III trial assessing bevacizumab in stages II and III carcinoma of the colon: results of NSABP protocol C-08. J. Clin. Oncol.29, 11–16 (2011). ArticlePubMedCAS Google Scholar
Ebos, J. M. et al. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell15, 232–239 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Paez-Ribes, M. et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell15, 220–231 (2009). References 78 and 79 provide preclinical evidence that VEGF or VEGFR blockade can enhance metastasis, whereas references 87 and 88 provide preclinical and clinical evidence that VEGF or VEGFR blockade has no effect on metastasis. ArticlePubMedPubMed CentralCAS Google Scholar
Hida, K. et al. Tumor-associated endothelial cells with cytogenetic abnormalities. Cancer Res.64, 8249–8255 (2004). ArticlePubMedCAS Google Scholar
Ferrara, N. Pathways mediating VEGF-independent tumor angiogenesis. Cytokine Growth Factor Rev.21, 21–26 (2010). References 46 and 82 discuss the mechanisms of resistance to VEGF or VEGFR blockade. ArticlePubMedCAS Google Scholar
Nagengast, W. B. et al. VEGF-PET imaging is a noninvasive biomarker showing differential changes in the tumor during sunitinib treatment. Cancer Res.71, 143–153 (2011). ArticlePubMedCAS Google Scholar
Joyce, J. A. & Pollard, J. W. Microenvironmental regulation of metastasis. Nature Rev. Cancer9, 239–252 (2009). ArticleCAS Google Scholar
di Tomaso, E. et al. Glioblastoma recurrence after cediranib therapy in patients: lack of “rebound” revascularization as mode of escape. Cancer Res.71, 19–28 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Padera, T. P. et al. Differential response of primary tumor versus lymphatic metastasis to VEGFR-2 and VEGFR-3 kinase inhibitors cediranib and vandetanib. Mol. Cancer Ther.7, 2272–2279 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Miles, D. et al. Disease course patterns after discontinuation of bevacizumab: pooled analysis of randomized phase III trials. J. Clin. Oncol.29, 83–88 (2010). ArticlePubMedCAS Google Scholar
Jain, R. K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science307, 58–62 (2005). This review presents evidence for vascular abnormalities in tumours, and the therapeutic potential to normalize these vessels for treatment of cancer and other diseases characterized by abnormal vessels. ArticleADSPubMedCAS Google Scholar
Jain, R. K. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nature Med.7, 987–989 (2001). ArticlePubMedCAS Google Scholar
Plotkin, S. R. et al. Hearing improvement after bevacizumab in patients with neurofibromatosis type 2. N. Engl. J. Med.361, 358–367 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Butler, J. M., Kobayashi, H. & Rafii, S. Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nature Rev. Cancer10, 138–146 (2010). This review discusses the emerging concept that endothelial cells produce instructive signals for organ development, repair and even cancer. It also highlights the importance of hypoxia-mediated signalling in angiogenesis. ArticleCAS Google Scholar
Mosch, B., Reissenweber, B., Neuber, C. & Pietzsch, J. Eph receptors and ephrin ligands: important players in angiogenesis and tumor angiogenesis. J. Oncol.2010, 135285 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Sawamiphak, S. et al. Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis. Nature465, 487–491 (2010). ArticleADSPubMedCAS Google Scholar
Majmundar, A. J., Wong, W. J. & Simon, M. C. Hypoxia-inducible factors and the response to hypoxic stress. Mol. Cell40, 294–309 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Fraisl, P., Mazzone, M., Schmidt, T. & Carmeliet, P. Regulation of angiogenesis by oxygen and metabolism. Dev. Cell16, 167–179 (2009). ArticlePubMedCAS Google Scholar
Arany, Z. et al. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1α. Nature451, 1008–1112 (2008). References 24, 97 and 98 discuss the link between metabolism and angiogenesis, and show that metabolic regulators control angiogenesis. ArticleADSPubMedCAS Google Scholar
Ohtani, K. & Dimmeler, S. Control of cardiovascular differentiation by microRNAs. Basic Res. Cardiol.106, 5–11 (2010). This review discusses the emerging evidence for regulation of angiogenesis by epigenetic mechanisms. ArticlePubMedCAS Google Scholar