NK cells and type 1 innate lymphoid cells: partners in host defense (original) (raw)
Spits, H. & Di Santo, J.P. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat. Immunol.12, 21–27 (2011). ArticleCASPubMed Google Scholar
Spits, H. et al. Innate lymphoid cells—a proposal for uniform nomenclature. Nat. Rev. Immunol.13, 145–149 (2013). ArticleCASPubMed Google Scholar
Townsend, M.J. et al. T-bet regulates the terminal maturation and homeostasis of NK and Vα14i NKT cells. Immunity20, 477–494 (2004). ArticleCASPubMed Google Scholar
Lanier, L.L., Phillips, J.H., Hackett, J. Jr., Tutt, M. & Kumar, V. Natural killer cells: definition of a cell type rather than a function. J. Immunol.137, 2735–2739 (1986). CASPubMed Google Scholar
Lanier, L.L., Le, A.M., Civin, C.I., Loken, M.R. & Phillips, J.H. The relationship of CD16 (Leu-11) and Leu-19 (NKH-1) antigen expression on human peripheral blood NK cells and cytotoxic T lymphocytes. J. Immunol.136, 4480–4486 (1986). CASPubMed Google Scholar
Nagler, A., Lanier, L.L., Cwirla, S. & Phillips, J.H. Comparative studies of human FcRIII-positive and negative natural killer cells. J. Immunol.143, 3183–3191 (1989). CASPubMed Google Scholar
Cooper, M.A. et al. Human natural killer cells: a unique innate immunoregulatory role for the CD56bright subset. Blood97, 3146–3151 (2001). ArticleCASPubMed Google Scholar
Romagnani, C. et al. CD56brightCD16− killer Ig-like receptor− NK cells display longer telomeres and acquire features of CD56dim NK cells upon activation. J. Immunol.178, 4947–4955 (2007). ArticleCASPubMed Google Scholar
Hu, P.F. et al. Natural killer cell immunodeficiency in HIV disease is manifest by profoundly decreased numbers of CD16+CD56+ cells and expansion of a population of CD16dimCD56− cells with low lytic activity. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol.10, 331–340 (1995). CASPubMed Google Scholar
Mavilio, D. et al. Characterization of CD56−CD16+ natural killer (NK) cells: a highly dysfunctional NK subset expanded in HIV-infected viremic individuals. Proc. Natl. Acad. Sci. USA102, 2886–2891 (2005). ArticleCASPubMedPubMed Central Google Scholar
Milush, J.M. et al. CD56negCD16+ NK cells are activated mature NK cells with impaired effector function during HIV-1 infection. Retrovirology10, 158 (2013). ArticlePubMedPubMed Central Google Scholar
Papewalis, C. et al. IFN-α skews monocytes into CD56+-expressing dendritic cells with potent functional activities in vitro and in vivo. J. Immunol.180, 1462–1470 (2008). ArticleCASPubMed Google Scholar
Milush, J.M. et al. Functionally distinct subsets of human NK cells and monocyte/DC-like cells identified by coexpression of CD56, CD7, and CD4. Blood114, 4823–4831 (2009). ArticleCASPubMedPubMed Central Google Scholar
Arase, H., Saito, T., Phillips, J.H. & Lanier, L.L. Cutting edge: the mouse NK cell-associated antigen recognized by DX5 monoclonal antibody is CD49b (α2 integrin, very late antigen-2). J. Immunol.167, 1141–1144 (2001). ArticleCASPubMed Google Scholar
Marquardt, N. et al. Cutting edge: identification and characterization of human intrahepatic CD49a+ NK cells. J. Immunol.194, 2467–2471 (2015). ArticleCASPubMed Google Scholar
Bernink, J.H. et al. Interleukin-12 and -23 control plasticity of CD127+ group 1 and group 3 innate lymphoid cells in the intestinal lamina propria. Immunity43, 146–160 (2015). ArticleCASPubMed Google Scholar
Vosshenrich, C.A. et al. A thymic pathway of mouse natural killer cell development characterized by expression of GATA-3 and CD127. Nat. Immunol.7, 1217–1224 (2006). ArticleCASPubMed Google Scholar
Daussy, C. et al. T-bet and Eomes instruct the development of two distinct natural killer cell lineages in the liver and in the bone marrow. J. Exp. Med.211, 563–577 (2014). ArticleCASPubMedPubMed Central Google Scholar
Gordon, S.M. et al. The transcription factors T-bet and Eomes control key checkpoints of natural killer cell maturation. Immunity36, 55–67 (2012). ArticleCASPubMedPubMed Central Google Scholar
Fathman, J.W. et al. Identification of the earliest natural killer cell-committed progenitor in murine bone marrow. Blood118, 5439–5447 (2011). ArticleCASPubMedPubMed Central Google Scholar
Knox, J.J., Cosma, G.L., Betts, M.R. & McLane, L.M. Characterization of T-bet and eomes in peripheral human immune cells. Front. Immunol.5, 217 (2014). ArticlePubMedPubMed Central Google Scholar
Gasteiger, G., Fan, X., Dikiy, S., Lee, S.Y. & Rudensky, A.Y. Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs. Science350, 981–985 (2015). ArticleCASPubMedPubMed Central Google Scholar
Vonarbourg, C. et al. Regulated expression of nuclear receptor RORγt confers distinct functional fates to NK cell receptor-expressing RORγt+ innate lymphocytes. Immunity33, 736–751 (2010). ArticleCASPubMedPubMed Central Google Scholar
Klose, C.S. et al. A T-bet gradient controls the fate and function of CCR6-RORγt+ innate lymphoid cells. Nature494, 261–265 (2013). ArticleCASPubMed Google Scholar
Klose, C.S. et al. Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell157, 340–356 (2014). ArticleCASPubMed Google Scholar
Nielsen, N., Ødum, N., Ursø, B., Lanier, L.L. & Spee, P. Cytotoxicity of CD56bright NK cells towards autologous activated CD4+ T cells is mediated through NKG2D, LFA-1 and TRAIL and dampened via CD94/NKG2A. PLoS One7, e31959 (2012). ArticleCASPubMedPubMed Central Google Scholar
Takeda, K. et al. TRAIL identifies immature natural killer cells in newborn mice and adult mouse liver. Blood105, 2082–2089 (2005). ArticleCASPubMed Google Scholar
Cortez, V.S., Fuchs, A., Cella, M., Gilfillan, S. & Colonna, M. Cutting edge: Salivary gland NK cells develop independently of Nfil3 in steady-state. J. Immunol.192, 4487–4491 (2014). ArticleCASPubMed Google Scholar
Sojka, D.K. et al. Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells. eLife3, e01659 (2014). ArticlePubMedPubMed Central Google Scholar
Firth, M.A. et al. Nfil3-independent lineage maintenance and antiviral response of natural killer cells. J. Exp. Med.210, 2981–2990 (2013). ArticleCASPubMedPubMed Central Google Scholar
Robinette, M.L. et al. Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets. Nat. Immunol.16, 306–317 (2015). ArticleCASPubMedPubMed Central Google Scholar
Bernink, J.H. et al. Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat. Immunol.14, 221–229 (2013). ArticleCASPubMed Google Scholar
Fuchs, A. et al. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-γ-producing cells. Immunity38, 769–781 (2013). ArticleCASPubMedPubMed Central Google Scholar
Cepek, K.L. et al. Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the αEβ7 integrin. Nature372, 190–193 (1994). ArticleCASPubMed Google Scholar
Roan, F. et al. CD4+ Group 1 innate lymphoid cells (ILC) form a functionally distinct ILC subset that is increased in systemic sclerosis. J. Immunol.196, 2051–2062 (2016). ArticleCASPubMed Google Scholar
Björklund, A.K. et al. The heterogeneity of human CD127+ innate lymphoid cells revealed by single-cell RNA sequencing. Nat. Immunol.17, 451–460 (2016). ArticlePubMed Google Scholar
Zook, E.C. & Kee, B.L. Development of innate lymphoid cells. Nat. Immunol.17, 775–782 (2016). ArticleCASPubMed Google Scholar
Yang, Q. et al. TCF-1 upregulation identifies early innate lymphoid progenitors in the bone marrow. Nat. Immunol.16, 1044–1050 (2015). ArticleCASPubMedPubMed Central Google Scholar
Constantinides, M.G., McDonald, B.D., Verhoef, P.A. & Bendelac, A. A committed precursor to innate lymphoid cells. Nature508, 397–401 (2014). ArticleCASPubMedPubMed Central Google Scholar
Constantinides, M.G. et al. PLZF expression maps the early stages of ILC1 lineage development. Proc. Natl. Acad. Sci. USA112, 5123–5128 (2015). ArticleCASPubMedPubMed Central Google Scholar
Renoux, V.M. et al. Identification of a human natural killer cell lineage-restricted progenitor in fetal and adult tissues. Immunity43, 394–407 (2015). ArticleCASPubMed Google Scholar
Montaldo, E. et al. Human RORγt+CD34+ cells are lineage-specified progenitors of group 3 RORγt+ innate lymphoid cells. Immunity41, 988–1000 (2014). ArticleCASPubMed Google Scholar
Crellin, N.K. et al. Regulation of cytokine secretion in human CD127+ LTi-like innate lymphoid cells by Toll-like receptor 2. Immunity33, 752–764 (2010). ArticleCASPubMed Google Scholar
Crellin, N.K., Trifari, S., Kaplan, C.D., Cupedo, T. & Spits, H. Human NKp44+IL-22+ cells and LTi-like cells constitute a stable RORC+ lineage distinct from conventional natural killer cells. J. Exp. Med.207, 281–290 (2010). ArticleCASPubMedPubMed Central Google Scholar
Cella, M., Otero, K. & Colonna, M. Expansion of human NK-22 cells with IL-7, IL-2, and IL-1β reveals intrinsic functional plasticity. Proc. Natl. Acad. Sci. USA107, 10961–10966 (2010). ArticleCASPubMedPubMed Central Google Scholar
Silver, J.S. et al. Inflammatory triggers associated with COPD exacerbations orchestrate ILC2 plasticity in the lung. Nat. Immunol.http://dx.doi.org/10.1038/ni.3443 (2016).
Ohne, Y. et al. IL-1 is a critical regulator of group 2 innate lymphoid cell function and plasticity. Nat. Immunol.http://dx.doi.org/10.1038/ni.3447 (2016).
Bal, S.M. et al. Interleukin-1β, -4 and -12 control ILC2 fate in human airway inflammation. Nat. Immunol.17, 636–645 (2016). ArticleCASPubMed Google Scholar
Peters, C.P., Mjösberg, J.M., Bernink, J.H. & Spits, H. Innate lymphoid cells in inflammatory bowel diseases. Immunol. Lett.172, 124–131 (2016). ArticleCASPubMed Google Scholar
Jenne, C.N. et al. T-bet-dependent S1P5 expression in NK cells promotes egress from lymph nodes and bone marrow. J. Exp. Med.206, 2469–2481 (2009). ArticleCASPubMedPubMed Central Google Scholar
Abt, M.C. et al. Innate immune defenses mediated by two ILC subsets are critical for protection against acute Clostridium difficile infection. Cell Host Microbe18, 27–37 (2015). ArticleCASPubMedPubMed Central Google Scholar
Powell, N. et al. The transcription factor T-bet regulates intestinal inflammation mediated by interleukin-7 receptor+ innate lymphoid cells. Immunity37, 674–684 (2012). ArticleCASPubMedPubMed Central Google Scholar
Morvan, M.G. & Lanier, L.L. NK cells and cancer: you can teach innate cells new tricks. Nat. Rev. Cancer16, 7–19 (2016). ArticleCASPubMed Google Scholar
Eisenring, M., vom Berg, J., Kristiansen, G., Saller, E. & Becher, B. IL-12 initiates tumor rejection via lymphoid tissue-inducer cells bearing the natural cytotoxicity receptor NKp46. Nat. Immunol.11, 1030–1038 (2010). ArticleCASPubMed Google Scholar