Regulatory T cells in the control of immune pathology (original) (raw)
Gershon, R. K. A disquisition on suppressor T cells. Transplant. Rev.26, 170–185 (1975). CASPubMed Google Scholar
Mason, D. & Powrie, F. Control of immune pathology by regulatory T cells. Curr. Opin. Immunol.10, 649–655 (1998). CASPubMed Google Scholar
Shevach, E. M. Regulatory T cells in autoimmmunity. Annu. Rev. Immunol.18, 423–449 (2000). CASPubMed Google Scholar
Sakaguchi, S. Animal models of autoimmunity and their relevance to human diseases. Curr. Opin. Immunol.12, 684–690 (2000). CASPubMed Google Scholar
Roncarolo, M. G. & Levings, M. K. The role of different subsets of T regulatory cells in controlling autoimmunity. Curr. Opin. Immunol.12, 676–683 (2000). CASPubMed Google Scholar
Fowell, D. & Mason, D. Evidence that the T cell repertoire of normal rats contains cells with the potential to cause diabetes. Characterization of the CD4+ T cell subset that inhibits this autoimmune potential. J. Exp. Med.177, 627–636 (1993). CASPubMed Google Scholar
Hafler, D. A. & Weiner, H. L. Immunologic mechanisms and therapy in multiple sclerosis. Immunol. Rev.144, 75–107 (1995). CASPubMed Google Scholar
Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol.155, 1151–1164 (1995). CASPubMed Google Scholar
Hemmer, B., Vergelli, M., Pinilla, C., Houghten, R. & Martin, R. Probing degeneracy in T-cell recognition using peptide combinatorial libraries. Immunol. Today.19, 163–168 (1998). CASPubMed Google Scholar
Mason, D. A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol. Today19, 395–404 (1998). CASPubMed Google Scholar
Hausmann, S. & Wucherpfennig, K. W. Activation of autoreactive T cells by peptides from human pathogens. Curr. Opin. Immunol.9, 831–838 (1997). CASPubMedPubMed Central Google Scholar
Schwartz, R. H. Models of T cell anergy: is there a common molecular mechanism? J. Exp. Med.184, 1–8 (1996). CASPubMed Google Scholar
Miller, J. F. & Basten, A. Mechanisms of tolerance to self. Curr. Opin. Immunol.8, 815–821 (1996). CASPubMed Google Scholar
Zinkernagel, R. M. et al. Antigen localisation regulates immune responses in a dose- and time- dependent fashion: a geographical view of immune reactivity. Immunol. Rev.156, 199–209 (1997). CASPubMed Google Scholar
Coutinho, A., Salaun, J., Corbel, C., Bandeira, A. & Le Douarin, N. The role of thymic epithelium in the establishment of transplantation tolerance. Immunol. Rev.133, 225–240 (1993). CASPubMed Google Scholar
Le Douarin, N. et al. Evidence for a thymus-dependent form of tolerance that is not based on elimination or anergy of reactive T cells. Immunol. Rev.149, 35–53 (1996). CASPubMed Google Scholar
Asano, M., Toda, M., Sakaguchi, N. & Sakaguchi, S. Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J. Exp. Med.184, 387–396 (1996). CASPubMed Google Scholar
Seddon, B. & Mason, D. Regulatory T cells in the control of autoimmunity: the essential role of transforming growth factor β and interleukin 4 in the prevention of autoimmune thyroiditis in rats by peripheral CD4+CD45RC− cells and CD4+CD8− thymocytes. J. Exp. Med.189, 279–288 (1999). CASPubMedPubMed Central Google Scholar
Olivares-Villagomez, D., Wang, Y. & Lafaille, J. J. Regulatory CD4+ T cells expressing endogenous T cell receptor chains protect myelin basic protein-specific transgenic mice from spontaneous autoimmune encephalomyelitis. J. Exp. Med.188, 1883–1894 (1998). CASPubMedPubMed Central Google Scholar
Van de Keere, F. & Tonegawa, S. CD4+ T cells prevent spontaneous experimental autoimmune encephalomyelitis in anti-myelin basic protein T cell receptor transgenic mice. J. Exp. Med.188, 1875–1882 (1998). CASPubMedPubMed Central Google Scholar
Mordes, J. P. et al. Transfusions enriched for W3/25+ helper/inducer T lymphocytes prevent spontaneous diabetes in the BB/W rat. Diabetologia30, 22–26 (1987). CASPubMed Google Scholar
Powrie, F., Leach, M. W., Mauze, S., Caddle, L. B. & Coffman, R. L. Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C. B-17 scid mice. Int. Immunol.5, 1461–1471 (1993). CASPubMed Google Scholar
Read, S., Malmstrom, V. & Powrie, F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J. Exp. Med.192, 295–302 (2000). CASPubMedPubMed Central Google Scholar
Stockinger, G., Barthlott, T. & Kassiotis, G. T cell regulation: a special job or everyone's responsibility? Nature Immunol.2, 757–758 (2001). CAS Google Scholar
Takahashi, T. et al. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int. Immunol.10, 1969–1980 (1998). CASPubMed Google Scholar
Thornton, A. E. & Shevach, E. M. CD4+ CD25+ Immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med.188, 287–296 (1998). CASPubMedPubMed Central Google Scholar
Suri-Payer, E., Amar, Z. A., Thornton, A. M. & Shevach, E. M. CD4+ CD25+ T cells inhibit both the induction and effector function of autoreactive T cells and represent a unique lineage of immunoregulatory cells. J. Immunol.160, 1212–1218 (1998). CASPubMed Google Scholar
Salomon, B. et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity12, 431–440 (2000). CASPubMed Google Scholar
Takahashi, T. et al. Immunologic self-tolerance maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med.192, 303–310 (2000). CASPubMedPubMed Central Google Scholar
Papiernik, M., de Moraes, M. L., Pontoux, C., Vasseur, F. & Penit, C. Regulatory CD4 T cells: expression of IL-2R α chain, resistance to clonal deletion and IL-2 dependency. Int. Immunol.10, 371–378 (1998). CASPubMed Google Scholar
Stephens, L. A. & Mason, D. CD25 is a marker for CD4+ thymocytes that prevent autoimmune diabetes in rats, but peripheral T cells with this function are found in both CD25+ and CD25− subpopulations. J. Immunol.165, 3105–3110 (2000). CASPubMed Google Scholar
Hara, M. et al. IL-10 is required for regulatory T cells to mediate tolerance to alloantigens in vivo. J. Immunol.166, 3789–3796 (2001). CASPubMed Google Scholar
Gao, Q., Rouse, T. M., Kazmerzak, K. & Field, E. H. CD4+CD25+ cells regulate CD8 cell anergy in neonatal tolerant mice. Transplantation68, 1891–1897 (1999). CASPubMed Google Scholar
Taylor, P. A., Noelle, R. J. & Blazar, B. R. CD4+CD25+ Immune Regulatory cells are required for induction of tolerance to alloantigen via costimulatory blockade. J. Exp. Med.193, 1311–1318 (2001). CASPubMedPubMed Central Google Scholar
Shimizu, J., Yamazaki, S. & Sakaguchi, S. Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J. Immunol.163, 5211–5218 (1999). CASPubMed Google Scholar
Annacker, O. et al. CD25+ CD4+ T cells regulate the expansion of peripheral CD4 T cells through the production of IL-10. J. Immunol.166, 3008–3018 (2001). CASPubMed Google Scholar
Itoh, M. et al. Thymus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J. Immunol.162, 5317–5326 (1999). CASPubMed Google Scholar
Stephens, L. A., Mottet, C., Mason, D. & Powrie, F. Human CD4+CD25+ thymocytes and peripheral T cells have immune suppressive activity in vitro. Eur. J. Immunol.31, 1247–1254 (2001). CASPubMed Google Scholar
Taams, L. S. et al. Human anergic/suppressive CD4+CD25+ T cells: a highly differentiated and apoptosis-prone population. Eur. J. Immunol.31, 1122–1131 (2001). CASPubMed Google Scholar
Dieckmann, D., Plottner, H., Berchtold, S., Berger, T. & Schuler, G. Ex vivo isolation and characterization of CD4+CD25+ T cells with regulatory properties from human blood. J. Exp. Med.193, 1303–1310 (2001). CASPubMedPubMed Central Google Scholar
Levings, M. K., Sangregorio, R. & Roncarolo, M. G. Human CD25+CD4+ T regulatory cells suppress naive and memory T cell proliferation and can be expanded in vitro without loss of function. J. Exp. Med.193, 1295–1302 (2001). CASPubMedPubMed Central Google Scholar
Jonuleit, H. et al. Identification and functional characterization of human CD4+CD25+ T cells with regulatory properties isolated from peripheral blood. J. Exp. Med.193, 1285–1294 (2001). CASPubMedPubMed Central Google Scholar
Olivares-Villagomez, D., Wensky, A. K., Wang, Y. & Lafaille, J. J. Repertoire requirements of CD4+ T cells that prevent spontaneous autoimmune encephalomyelitis. J. Immunol.164, 5499–5507 (2000). CASPubMed Google Scholar
Jenkins, M. K. & Schwartz, R. H. Antigen presentation by chemically modified splenocytes induces antigen- specific T cell unresponsiveness in vitro and in vivo. J. Exp. Med.165, 302–319 (1987). CASPubMed Google Scholar
Chai, J. G. et al. Anergic T cells act as suppressor cells in vitro and in vivo. Eur. J. Immunol.29, 686–692 (1999). CASPubMed Google Scholar
Taams, L. S. et al. Anergic T cells actively suppress T cell responses via the antigen- presenting cell. Eur. J. Immunol.28, 2902–2912 (1998). CASPubMed Google Scholar
Vendetti, S. et al. Anergic T cells inhibit the antigen-presenting function of dendritic cells. J. Immunol.165, 1175–1181 (2000). CASPubMed Google Scholar
Buer, J. et al. Interleukin 10 secretion and impaired effector function of major histocompatibility complex class II-restricted T cells anergized in vivo. J. Exp. Med.187, 177–183 (1998). CASPubMedPubMed Central Google Scholar
Sundstedt, A. et al. Immunoregulatory role of IL-10 during superantigen-induced hyporesponsiveness in vivo. J. Immunol.158, 180–186 (1997). CASPubMed Google Scholar
Groux, H., Bigler, M., de Vries, J. E. & Roncarolo, M. G. Interleukin-10 induces a long-term antigen-specific anergic state in human CD4+ T cells. J. Exp. Med.184, 19–29 (1996). CASPubMed Google Scholar
Groux, H. et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature389, 737–742 (1997). CASPubMed Google Scholar
Cottrez, F., Hurst, S. D., Coffman, R. L. & Groux, H. T regulatory cells 1 inhibit a Th2-specific response in vivo. J. Immunol.165, 4848–4853 (2000). CASPubMed Google Scholar
Chen, Y., Kuchroo, V. K., Inobe, J., Hafler, D. A. & Weiner, H. L. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science265, 1237–1240 (1994). CASPubMed Google Scholar
Neurath, M. F. et al. Experimental granulomatous colitis in mice is abrogated by induction of TGF-β-mediated oral tolerance. J. Exp. Med.183, 2605–2616 (1996). CASPubMed Google Scholar
Weiner, H. L. Oral tolerance: immune mechanisms and treatment of autoimmune diseases. Immunol. Today18, 335–343 (1997). CASPubMed Google Scholar
Waldmann, H. & Cobbold, S. Regulating the immune response to transplants. A role for CD4+ regulatory cells? Immunity14, 399–406 (2001). CASPubMed Google Scholar
Zhai, Y. & Kupiec-Weglinski, J. W. What is the role of regulatory T cells in transplantation tolerance? Curr. Opin. Immunol.11, 497–503 (1999). CASPubMed Google Scholar
Cobbold, S. & Waldmann, H. Infectious tolerance. Curr. Opin. Immunol.10, 518–524 (1998). CASPubMed Google Scholar
Davies, J. D. et al. CD4+ CD45RB low-density cells from untreated mice prevent acute allograft rejection. J. Immunol.163, 5353–5357 (1999). CASPubMed Google Scholar
Seddon, B. & Mason, D. The third function of the thymus. Immunol. Today21, 95–99 (2000). CASPubMed Google Scholar
Saoudi, A., Seddon, B., Fowell, D. & Mason, D. The thymus contains a high frequency of cells that prevent autoimmune diabetes on transfer into prediabetic recipients. J. Exp. Med.184, 2393–2398 (1996). CASPubMedPubMed Central Google Scholar
Herbelin, A., Gombert, J. M., Lepault, F., Bach, J. F. & Chatenoud, L. Mature mainstream TCRαβ+CD4+ thymocytes expressing L-selectin mediate “active tolerance” in the nonobese diabetic mouse. J. Immunol.161, 2620–2628 (1998). CASPubMed Google Scholar
Singh, B. et al. Control of intestinal inflammation by regulatory T cells. Immunol. Rev.182, (in the press, 2001).
Modigliani, Y., Bandeira, A. & Coutinho, A. A model for developmentally acquired thymus-dependent tolerance to central and peripheral antigens. Immunol. Rev.149, 155–120 (1996). CASPubMed Google Scholar
Jordan, M. S., Riley, M. P., von Boehmer, H. & Caton, A. J. Anergy and suppression regulate CD4+ T cell responses to a self peptide. Eur. J. Immunol.30, 136–144 (2000). CASPubMed Google Scholar
Jordan, M. S. et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nature Immunol.2, 301–306 (2001). CAS Google Scholar
Suri-Payer, E. et al. Post-thymectomy autoimmune gastritis: fine specificity and pathogenicity of anti-H/K ATPase-reactive T cells. Eur. J. Immunol.29, 669–677 (1999). CASPubMed Google Scholar
Kumanogoh, A. et al. Increased T cell autoreactivity in the absence of CD40-CD40 ligand interactions: a role of CD40 in regulatory T cell development. J. Immunol.166, 353–360 (2001). CASPubMed Google Scholar
Kuniyasu, Y. et al. Naturally anergic and suppressive CD25+CD4+ T cells as a functionally and phenotypically distinct immunoregulatory T cell subpopulation. Int. Immunol.12, 1145–1155 (2000). CASPubMed Google Scholar
Seddon, B. & Mason, D. Peripheral autoantigen induces regulatory T cells that prevent autoimmunity. J. Exp. Med.189, 877–882 (1999). CASPubMedPubMed Central Google Scholar
Duchmann, R. et al. Tolerance exists towards resident intestinal flora but is broken in active inflammatory bowel disease (IBD). Clin. Exp. Immunol.102, 448–455 (1995). CASPubMedPubMed Central Google Scholar
Khoo, U. Y., Proctor, I. E. & Macpherson, A. J. CD4+ T cell down-regulation in human intestinal mucosa: evidence for intestinal tolerance to luminal bacterial antigens. J. Immunol.158, 3626–3634 (1997). CASPubMed Google Scholar
Taguchi, O. et al. Tissue-specific suppressor T cells involved in self-tolerance are activated extrathymically by self-antigens. Immunology82, 365–369 (1994). CASPubMedPubMed Central Google Scholar
Modigliani, Y. et al. Establishment of tissue-specific tolerance is driven by regulatory T cells selected by thymic epithelium. Eur. J. Immunol.26, 1807–1815 (1996). CASPubMed Google Scholar
Thorstenson, K. M. & Khoruts, A. Generation of anergic CD25+CD4+ T cells with immunoregulatory potential in vivo following induction of peripheral tolerance with intravenous or oral antigen. J. Immunol.167, 188–195 (2001). CASPubMed Google Scholar
O'Garra, A. Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity8, 275–283 (1998). CASPubMed Google Scholar
Lanzavecchia, A. & Sallusto, F. Dynamics of T lymphocyte responses: intermediates, effectors, and memory cells. Science290, 92–97 (2000). CASPubMed Google Scholar
Steinbrink, K., Wolfl, M., Jonuleit, H., Knop, J. & Enk, A. H. Induction of tolerance by IL-10-treated dendritic cells. J. Immunol.159, 4772–4780 (1997). CASPubMed Google Scholar
Jonuleit, H., Schmitt, E., Schuler, G., Knop, J. & Enk, A. H. Induction of interleukin 10-producing, nonproliferating CD4+ T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J. Exp. Med.192, 1213–1222 (2000). CASPubMedPubMed Central Google Scholar
Dhodapkar, M. V., Steinman, R. M., Krasovsky, J., Munz, C. & Bhardwaj, N. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J. Exp. Med.193, 233–238 (2001). CASPubMedPubMed Central Google Scholar
Yamagiwa, S., Gray, J. D., Hashimoto, S. & Horwitz, D. A. A role for TGF-β in the generation and expansion of CD4+CD25+ regulatory T cells from human peripheral blood. J. Immunol.166, 7282–7289 (2001). CASPubMed Google Scholar
Hoyne, G. F. et al. Serrate1-induced notch signalling regulates the decision between immunity and tolerance made by peripheral CD4+ T cells. Int. Immunol.12, 177–185 (2000). CASPubMed Google Scholar
Powrie, F., Carlino, J., Leach, M. W., Mauze, S. & Coffman, R. L. A critical role for transforming growth factor-β but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RBlo CD4+ T cells. J. Exp. Med.183, 2669–2674 (1996). CASPubMed Google Scholar
Asseman, C., Mauze, S., Leach, M. W., Coffman, R. L. & Powrie, F. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J. Exp. Med.190, 995–1004 (1999). CASPubMedPubMed Central Google Scholar
Ding, L. & Shevach, E. M. IL-10 inhibits mitogen-induced T cell proliferation by selectively inhibiting macrophage costimulatory function. J. Immunol.148, 3133–3139 (1992). CASPubMed Google Scholar
Fiorentino, D. F. et al. IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Th1 cells. J. Immunol.146, 3444–3451 (1991). CASPubMed Google Scholar
Takeuchi, M., Alard, P. & Streilein, J. W. TGF-β promotes immune deviation by altering accessory signals of antigen-presenting cells. J. Immunol.160, 1589–1597 (1998). CASPubMed Google Scholar
Kitani, A. et al. Treatment of experimental (Trinitrobenzene sulfonic acid) colitis by intranasal administration of transforming growth factor (TGF)-β1 plasmid: TGF-β1-mediated suppression of T helper cell type 1 response occurs by interleukin (IL)-10 induction and IL-12 receptor β2 chain downregulation. J. Exp. Med.192, 41–52 (2000). CASPubMedPubMed Central Google Scholar
Letterio, J. J. & Roberts, A. B. Regulation of immune responses by TGF-β. Annu. Rev. Immunol.16, 137–161 (1998). CASPubMed Google Scholar
Gorelik, L. & Flavell, R. A. Abrogation of TGFβ signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity12, 171–181 (2000). CASPubMed Google Scholar
Moore, K. W., de Waal Malefyt, R., Coffman, R. L. & O'Garra, A. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol.19, 683–765 (2001). CASPubMed Google Scholar
Takeda, K. et al. Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity10, 39–49 (1999). CASPubMed Google Scholar
Thornton, A. M. & Shevach, E. M. Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific. J. Immunol.164, 183–190 (2000). CASPubMed Google Scholar
Cederbom, L., Hall, H. & Ivars, F. CD4+CD25+ regulatory T cells down-regulate co-stimulatory molecules on antigen-presenting cells. Eur. J. Immunol.30, 1538–1543 (2000). CASPubMed Google Scholar
Shevach, E. M. Certified Professionals. CD4+CD25+ suppressor T cells. J. Exp. Med.193, 41–46 (2001). Google Scholar
Suri-Payer, E. & Cantor, H. Differential cytokine requirements for regulation of autoimmune gastritis and colitis by cd4(+)cd25(+)t cells. J. Autoimmunity16, 115–123 (2001). CAS Google Scholar
Lepault, F. & Gagnerault, M. C. Characterization of peripheral regulatory CD4+ T cells that prevent diabetes onset in nonobese diabetic mice. J. Immunol.164, 240–247 (2000). CASPubMed Google Scholar
Chambers, C. A., Kuhns, M. S., Egen, J. G. & Allison, J. P. CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu. Rev. Immunol.19, 565–594 (2001). CASPubMed Google Scholar
Chen, W., Jin, W. & Wahl, S. M. Engagement of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) induces transforming growth factor β (TGF-β) production by murine CD4+ T cells. J. Exp. Med.188, 1849–1857 (1998). CASPubMedPubMed Central Google Scholar
Malmstrom, V. et al. CD134L expression on dendritic cells in the mesenteric lymph nodes drives colitis in T cell-restored scid mice. J. Immunol.166, 6972–6981 (2001). CASPubMed Google Scholar
Scheerens, H., Hessel, E., de Waal-Malefyt, R., Leach, M. W. & Rennick, D. Characterization of chemokines and chemokine receptors in two murine models of inflammatory bowel disease: IL-10−/− mice and Rag-2−/− mice reconstituted with CD4+CD45RBhi T cells. Eur. J. Immunol.31, 1465–1474 (2001). CASPubMed Google Scholar
Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol.12, 991–1045 (1994). CASPubMed Google Scholar
Medzhitov, R. & Janeway, C. A. Jr Innate immunity: the virtues of a nonclonal system of recognition. Cell91, 295–298 (1997). CASPubMed Google Scholar
Mackay, C. R. Homing of naive, memory and effector lymphocytes. Curr. Opin. Immunol.5, 423–427 (1993). CASPubMed Google Scholar
Randolph, G. J., Beaulieu, S., Lebecque, S., Steinman, R. M. & Muller, W. A. Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking. Science282, 480–483 (1998). CASPubMed Google Scholar
Albert, M. L. et al. Immature dendritic cells phagocytose apoptotic cells via αvβ5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J. Exp. Med.188, 1359–1368 (1998). CASPubMedPubMed Central Google Scholar
Sauter, B. et al. Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J. Exp. Med.191, 423–434 (2000). CASPubMedPubMed Central Google Scholar
Kurts, C. et al. Constitutive class I-restricted exogenous presentation of self antigens in vivo. J. Exp. Med.184, 923–930 (1996). CASPubMed Google Scholar
Forster, I. & Lieberam, I. Peripheral tolerance of CD4 T cells following local activation in adolescent mice. Eur. J. Immunol.26, 3194–3202 (1996). CASPubMed Google Scholar
Adler, A. J. et al. CD4+ T cell tolerance to parenchymal self-antigens requires presentation by bone marrow-derived antigen-presenting cells. J. Exp. Med.187, 1555–1564 (1998). CASPubMedPubMed Central Google Scholar
Banchereau, J. et al. Immunobiology of dendritic cells. Annu. Rev. Immunol.18, 767–811 (2000). CASPubMed Google Scholar
Taguchi, O. & Takahashi, T. Administration of anti-interleukin-2 receptorα antibody in vivo induces localized autoimmune disease. Eur. J. Immunol.26, 1608–1612 (1996). CASPubMed Google Scholar