Osteopontin expression is essential for interferon-α production by plasmacytoid dendritic cells (original) (raw)
Iwasaki, A. & Medzhitov, R. Toll-like receptor control of the adaptive immune responses. Nat. Immunol.5, 987–995 (2004). ArticleCAS Google Scholar
Liu, Y.J. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu. Rev. Immunol.23, 275–306 (2005). ArticleCAS Google Scholar
Krug, A. et al. TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunity21, 107–119 (2004). ArticleCAS Google Scholar
Colonna, M., Trinchieri, G. & Liu, Y.J. Plasmacytoid dendritic cells in immunity. Nat. Immunol.5, 1219–1226 (2004). ArticleCAS Google Scholar
Banchereau, J., Pascual, V. & Palucka, A.K. Autoimmunity through cytokine-induced dendritic cell activation. Immunity20, 539–550 (2004). ArticleCAS Google Scholar
Theofilopoulos, A.N., Baccala, R., Beutler, B. & Kono, D.H. Type I interferons (α/β) in immunity and autoimmunity. Annu. Rev. Immunol.23, 307–336 (2005). ArticleCAS Google Scholar
Le Bon, A. et al. Cross-priming of CD8+ T cells stimulated by virus-induced type I interferon. Nat. Immunol.4, 1009–1015 (2003). ArticleCAS Google Scholar
Boonstra, A. et al. Flexibility of mouse classical and plasmacytoid-derived dendritic cells in directing T helper type 1 and 2 cell development: dependency on antigen dose and differential toll-like receptor ligation. J. Exp. Med.197, 101–109 (2003). ArticleCAS Google Scholar
Salio, M., Palmowski, M.J., Atzberger, A., Hermans, I.F. & Cerundolo, V. CpG-matured murine plasmacytoid dendritic cells are capable of in vivo priming of functional CD8 T cell responses to endogenous but not exogenous antigens. J. Exp. Med.199, 567–579 (2004). ArticleCAS Google Scholar
Honda, K., Yanai, H., Takaoka, A. & Taniguchi, T. Regulation of the type I IFN induction: a current view. Int. Immunol.17, 1367–1378 (2005). ArticleCAS Google Scholar
Kawai, T. & Akira, S. Pathogen recognition with Toll-like receptors. Curr. Opin. Immunol.17, 338–344 (2005). ArticleCAS Google Scholar
Honda, K. et al. Spatiotemporal regulation of MyD88–IRF7 signalling for robust type-I interferon induction. Nature434, 1035–1040 (2005). ArticleCAS Google Scholar
Ashkar, S. et al. Eta-1 (osteopontin): an early component of Type 1 (cell-mediated) immunity. Science287, 860–864 (2000). ArticleCAS Google Scholar
Shinohara, M.L. et al. T-bet-dependent expression of osteopontin contributes to T cell polarization. Proc. Natl. Acad. Sci. USA102, 17101–17106 (2005). ArticleCAS Google Scholar
Miyazaki, T. et al. Implication of allelic polymorphism of osteopontin in the development of lupus nephritis in MRL/lpr mice. Eur. J. Immunol.35, 1510–1520 (2005). ArticleCAS Google Scholar
Nau, G.J. et al. Attenuated host resistance against Mycobacterium bovis BCG infection in mice lacking osteopontin. Infect. Immun.67, 4223–4230 (1999). CAS Google Scholar
Sibalic, V., Fan, X., Loffing, J. & Wuthrich, R.P. Upregulated renal tubular CD44, hyaluronan, and osteopontin in kdkd mice with interstitial nephritis. Nephrol. Dial. Transplant.12, 1344–1353 (1997). ArticleCAS Google Scholar
Yu, X.Q. et al. A functional role for osteopontin in experimental crescentic glomerulonephritis in the rat. Proc. Assoc. Am. Phys.110, 50–64 (1998). CAS Google Scholar
Hudkins, K.L. et al. Osteopontin expression in human crescentic glomerulonephritis. Kidney Int.57, 105–116 (2000). ArticleCAS Google Scholar
Steinman, L., Martin, R., Bernard, C., Conlon, P. & Oksenberg, J.R. Multiple sclerosis: deeper understanding of its pathogenesis reveals new targets for therapy. Annu. Rev. Neurosci.25, 491–505 (2002). ArticleCAS Google Scholar
Xu, G. et al. Role of osteopontin in amplification and perpetuation of rheumatoid synovitis. J. Clin. Invest.115, 1060–1067 (2005). ArticleCAS Google Scholar
Comabella, M. et al. Plasma osteopontin levels in multiple sclerosis. J. Neuroimmunol.158, 231–239 (2005). ArticleCAS Google Scholar
Gravallese, E.M. Osteopontin: a bridge between bone and the immune system. J. Clin. Invest.112, 147–149 (2003). ArticleCAS Google Scholar
Zohar, R. et al. Intracellular osteopontin is an integral component of the CD44-ERM complex involved in cell migration. J. Cell. Physiol.184, 118–130 (2000). ArticleCAS Google Scholar
Suzuki, K. et al. Colocalization of intracellular osteopontin with CD44 is associated with migration, cell fusion, and resorption in osteoclasts. J. Bone Miner. Res.17, 1486–1497 (2002). ArticleCAS Google Scholar
Zhu, B. et al. Osteopontin modulates CD44-dependent chemotaxis of peritoneal macrophages through G-protein-coupled receptors: evidence of a role for an intracellular form of osteopontin. J. Cell. Physiol.198, 155–167 (2004). ArticleCAS Google Scholar
Wilson, H.L. & O'Neill, H.C. Identification of differentially expressed genes representing dendritic cell precursors and their progeny. Blood102, 1661–1669 (2003). ArticleCAS Google Scholar
Renkl, A.C. et al. Osteopontin functionally activates dendritic cells and induces their differentiation toward a Th1-polarizing phenotype. Blood106, 946–955 (2005). ArticleCAS Google Scholar
Cantor, H. T-cell receptor crossreactivity and autoimmune disease. Adv. Immunol.75, 209–233 (2000). ArticleCAS Google Scholar
Denhardt, D.T., Noda, M., O'Regan, A.W., Pavlin, D. & Berman, J.S. Osteopontin as a means to cope with environmental insults: regulation of inflammation, tissue remodeling, and cell survival. J. Clin. Invest.107, 1055–1061 (2001). ArticleCAS Google Scholar
Diao, H. et al. Osteopontin as a mediator of NKT cell function in T cell-mediated liver diseases. Immunity21, 539–550 (2004). ArticleCAS Google Scholar
Weiss, J.M. et al. Osteopontin is involved in the initiation of cutaneous contact hypersensitivity by inducing Langerhans and dendritic cell migration to lymph nodes. J. Exp. Med.194, 1219–1230 (2001). ArticleCAS Google Scholar
Szabo, S.J. et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell100, 655–669 (2000). ArticleCAS Google Scholar
Lugo-Villarino, G., Ito, S., Klinman, D.M. & Glimcher, L.H. The adjuvant activity of CpG DNA requires T-bet expression in dendritic cells. Proc. Natl. Acad. Sci. USA102, 13248–13253 (2005). ArticleCAS Google Scholar
Lugo-Villarino, G., Maldonado-Lopez, R., Possemato, R., Penaranda, C. & Glimcher, L.H. T-bet is required for optimal production of IFN-γ and antigen-specific T cell activation by dendritic cells. Proc. Natl. Acad. Sci. USA100, 7749–7754 (2003). ArticleCAS Google Scholar
Hemmi, H., Kaisho, T., Takeda, K. & Akira, S. The roles of Toll-like receptor 9, MyD88, and DNA-dependent protein kinase catalytic subunit in the effects of two distinct CpG DNAs on dendritic cell subsets. J. Immunol.170, 3059–3064 (2003). ArticleCAS Google Scholar
Lee, S.W. et al. Effects of a hexameric deoxyriboguanosine run conjugation into CpG oligodeoxynucleotides on their immunostimulatory potentials. J. Immunol.165, 3631–3639 (2000). ArticleCAS Google Scholar
Durand, V., Wong, S.Y., Tough, D.F. & Le Bon, A. Shaping of adaptive immune responses to soluble proteins by TLR agonists: a role for IFN-α/β. Immunol. Cell Biol.82, 596–602 (2004). ArticleCAS Google Scholar
Haeryfar, S.M. The importance of being a pDC in antiviral immunity: the IFN mission versus Ag presentation? Trends Immunol.26, 311–317 (2005). ArticleCAS Google Scholar
Zuniga, E.I., McGavern, D.B., Pruneda-Paz, J.L., Teng, C. & Oldstone, M.B. Bone marrow plasmacytoid dendritic cells can differentiate into myeloid dendritic cells upon virus infection. Nat. Immunol.5, 1227–1234 (2004). ArticleCAS Google Scholar
Baccala, R., Kono, D.H. & Theofilopoulos, A.N. Interferons as pathogenic effectors in autoimmunity. Immunol. Rev.204, 9–26 (2005). ArticleCAS Google Scholar
Ballas, Z.K. et al. Divergent therapeutic and immunologic effects of oligodeoxynucleotides with distinct CpG motifs. J. Immunol.167, 4878–4886 (2001). ArticleCAS Google Scholar
Bonifacino, J.S. & Traub, L.M. Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu. Rev. Biochem.72, 395–447 (2003). ArticleCAS Google Scholar
Honda, K. et al. Role of a transductional-transcriptional processor complex involving MyD88 and IRF7 in Toll-like receptor signaling. Proc. Natl. Acad. Sci. USA101, 15416–15421 (2004). ArticleCAS Google Scholar
Takaoka, A. et al. Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature434, 243–249 (2005). ArticleCAS Google Scholar
Cho, H.J. et al. IFN-αβ promote priming of antigen-specific CD8+ and CD4+ T lymphocytes by immunostimulatory DNA-based vaccines. J. Immunol.168, 4907–4913 (2002). ArticleCAS Google Scholar
Datta, S.K. et al. A subset of Toll-like receptor ligands induces cross-presentation by bone marrow-derived dendritic cells. J. Immunol.170, 4102–4110 (2003). ArticleCAS Google Scholar
Heit, A. et al. Cutting edge: Toll-like receptor 9 expression is not required for CpG DNA-aided cross-presentation of DNA-conjugated antigens but essential for cross-priming of CD8 T cells. J. Immunol.170, 2802–2805 (2003). ArticleCAS Google Scholar
Barchet, W. et al. Dendritic cells respond to influenza virus through TLR7- and PKR-independent pathways. Eur. J. Immunol.35, 236–242 (2005). ArticleCAS Google Scholar
Abel, B., Freigang, S., Bachmann, M.F., Boschert, U. & Kopf, M. Osteopontin is not required for the development of Th1 responses and viral immunity. J. Immunol.175, 6006–6013 (2005). ArticleCAS Google Scholar
Hron, J.D. & Peng, S.L. Type I IFN protects against murine lupus. J. Immunol.173, 2134–2142 (2004). ArticleCAS Google Scholar
Li, J. et al. Deficiency of type I interferon contributes to Sle2-associated component lupus phenotypes. Arthritis Rheum.52, 3063–3072 (2005). ArticleCAS Google Scholar
Baechler, E.C. et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl. Acad. Sci. USA100, 2610–2615 (2003). ArticleCAS Google Scholar
Kono, D.H., Baccala, R. & Theofilopoulos, A.N. Inhibition of lupus by genetic alteration of the interferon-α/β receptor. Autoimmunity36, 503–510 (2003). ArticleCAS Google Scholar
Rittling, S.R. et al. Mice lacking osteopontin show normal development and bone structure but display altered osteoclast formation in vitro. J. Bone Miner. Res.13, 1101–1111 (1998). ArticleCAS Google Scholar
Nakano, H., Yanagita, M. & Gunn, M.D. CD11c+B220+Gr-1+ cells in mouse lymph nodes and spleen display characteristics of plasmacytoid dendritic cells. J. Exp. Med.194, 1171–1178 (2001). ArticleCAS Google Scholar
McCarty, N. et al. Signaling by the kinase MINK is essential in the negative selection of autoreactive thymocytes. Nat. Immunol.6, 65–72 (2005). ArticleCAS Google Scholar
Gilliet, M. & Liu, Y.J. Generation of human CD8 T regulatory cells by CD40 ligand-activated plasmacytoid dendritic cells. J. Exp. Med.195, 695–704 (2002). ArticleCAS Google Scholar
Hu, D. et al. Analysis of regulatory CD8 T cells in Qa-1-deficient mice. Nat. Immunol.5, 516–523 (2004). ArticleCAS Google Scholar
Andrews, N.C. & Faller, D.V. A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic Acids Res.19, 2499 (1991). ArticleCAS Google Scholar