- Akira, S. & Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol. 4, 499–511 (2004).
Article CAS Google Scholar
- Alexopoulou, L., Holt, A.C., Medzhitov, R. & Flavell, R.A. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413, 732–738 (2001).
Article CAS Google Scholar
- Heil, F. et al. Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science 303, 1526–1529 (2004).
Article CAS Google Scholar
- Diebold, S.S., Kaisho, T., Hemmi, H., Akira, S. & Reis e Sousa, C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303, 1529–1531 (2004).
Article CAS Google Scholar
- Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).
Article CAS Google Scholar
- Latz, E. et al. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat. Immunol. 5, 190–198 (2004).
Article CAS Google Scholar
- Krieg, A.M. et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374, 546–549 (1995).
Article CAS Google Scholar
- Means, T.K. et al. Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9. J. Clin. Invest. 115, 407–417 (2005).
Article CAS Google Scholar
- Rifkin, I.R., Leadbetter, E.A., Busconi, L., Viglianti, G. & Marshak-Rothstein, A. Toll-like receptors, endogenous ligands, and systemic autoimmune disease. Immunol. Rev. 204, 27–42 (2005).
Article CAS Google Scholar
- Marshak-Rothstein, A. Toll-like receptors in systemic autoimmune disease. Nat. Rev. Immunol. 6, 823–835 (2006).
Article CAS Google Scholar
- Krieg, A.M. Therapeutic potential of Toll-like receptor 9 activation. Nat. Rev. Drug Discov. 5, 471–484 (2006).
Article CAS Google Scholar
- Agrawal, S. & Kandimalla, E.R. Medicinal chemistry and therapeutic potential of CpG DNA. Trends Mol. Med. 8, 114–121 (2002).
Article CAS Google Scholar
- Gay, N.J., Gangloff, M. & Weber, A.N. Toll-like receptors as molecular switches. Nat. Rev. Immunol. 6, 693–698 (2006).
Article CAS Google Scholar
- Yasuda, K. et al. CpG motif-independent activation of TLR9 upon endosomal translocation of “natural” phosphodiester DNA. Eur. J. Immunol. 36, 431–436 (2006).
Article CAS Google Scholar
- Hartmann, G. & Krieg, A.M. Mechanism and function of a newly identified CpG DNA motif in human primary B cells. J. Immunol. 164, 944–953 (2000).
Article CAS Google Scholar
- Ashman, R.F., Goeken, J.A., Drahos, J. & Lenert, P. Sequence requirements for oligodeoxyribonucleotide inhibitory activity. Int. Immunol. 17, 411–420 (2005).
Article CAS Google Scholar
- Duramad, O. et al. Inhibitors of TLR-9 act on multiple cell subsets in mouse and man in vitro and prevent death in vivo from systemic inflammation. J. Immunol. 174, 5193–5200 (2005).
Article CAS Google Scholar
- Barrat, F.J. et al. Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J. Exp. Med. 202, 1131–1139 (2005).
Article CAS Google Scholar
- Kelly, S.M., Jess, T.J. & Price, N.C. How to study proteins by circular dichroism. Biochim. Biophys. Acta 1751, 119–139 (2005).
Article CAS Google Scholar
- Bell, J.K. et al. The molecular structure of the Toll-like receptor 3 ligand-binding domain. Proc. Natl. Acad. Sci. USA 102, 10976–10980 (2005).
Article CAS Google Scholar
- Choe, J., Kelker, M.S. & Wilson, I.A. Crystal structure of human Toll-like receptor 3 (TLR3) ectodomain. Science 309, 581–585 (2005).
Article CAS Google Scholar
- Bell, J.K. et al. Leucine-rich repeats and pathogen recognition in Toll-like receptors. Trends Immunol. 24, 528–533 (2003).
Article CAS Google Scholar
- Wallrabe, H. & Periasamy, A. Imaging protein molecules using FRET and FLIM microscopy. Curr. Opin. Biotechnol. 16, 19–27 (2005).
Article CAS Google Scholar
- Livnah, O. et al. Crystallographic evidence for preformed dimers of erythropoietin receptor before ligand activation. Science 283, 987–990 (1999).
Article CAS Google Scholar
- Remy, I., Wilson, I.A. & Michnick, S.W. Erythropoietin receptor activation by a ligand-induced conformation change. Science 283, 990–993 (1999).
Article CAS Google Scholar
- de Vos, A.M., Ultsch, M. & Kossiakoff, A.A. Human growth hormone and extracellular domain of its receptor: crystal structure of the complex. Science 255, 306–312 (1992).
Article CAS Google Scholar
- Tsien, R.Y. The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544 (1998).
Article CAS Google Scholar
- Ghosh, I., Hamilton, A.D. & Regan, L. Antiparallel leucine zipper-directed protein reassembly: application to the green fluorescent protein. J. Am. Chem. Soc. 122, 5658–5659 (2000).
Article CAS Google Scholar
- Jeong, J. et al. Monitoring of conformational change in maltose binding protein using split green fluorescent protein. Biochem. Biophys. Res. Commun. 339, 647–651 (2006).
Article CAS Google Scholar
- Hacker, H. et al. Immune cell activation by bacterial CpG-DNA through myeloid differentiation marker 88 and tumor necrosis factor receptor-associated factor (TRAF)6. J. Exp. Med. 192, 595–600 (2000).
Article CAS Google Scholar
- Ahmad-Nejad, P. et al. Bacterial CpG-DNA and lipopolysaccharides activate Toll-like receptors at distinct cellular compartments. Eur. J. Immunol. 32, 1958–1968 (2002).
Article CAS Google Scholar
- Krug, A. et al. Identification of CpG oligonucleotide sequences with high induction of IFN-α/β in plasmacytoid dendritic cells. Eur. J. Immunol. 31, 2154–2163 (2001).
Article CAS Google Scholar
- Hartmann, G. et al. Rational design of new CpG oligonucleotides that combine B cell activation with high IFN-α induction in plasmacytoid dendritic cells. Eur. J. Immunol. 33, 1633–1641 (2003).
Article CAS Google Scholar
- Taylor, I.A., Davis, K.G., Watts, D. & Kneale, G.G. DNA-binding induces a major structural transition in a type I methyltransferase. EMBO J. 13, 5772–5778 (1994).
Article CAS Google Scholar
- Weiss, M.A. et al. Folding transition in the DNA-binding domain of GCN4 on specific binding to DNA. Nature 347, 575–578 (1990).
Article CAS Google Scholar
- Winkler, F.K. Structure and function of restriction endonucleases. Curr. Opin. Struct. Biol. 2, 93–99 (1992).
Article CAS Google Scholar
- Cheng, X., Kumar, S., Posfai, J., Pflugrath, J.W. & Roberts, R.J. Crystal structure of the HhaI DNA methyltransferase complexed with S-adenosyl-L-methionine. Cell 74, 299–307 (1993).
Article CAS Google Scholar
- Weber, A.N., Morse, M.A. & Gay, N.J. Four N-linked glycosylation sites in human toll-like receptor 2 cooperate to direct efficient biosynthesis and secretion. J. Biol. Chem. 279, 34589–34594 (2004).
Article CAS Google Scholar
- O'Neil, K.T., Hoess, R.H. & DeGrado, W.F. Design of DNA-binding peptides based on the leucine zipper motif. Science 249, 774–778 (1990).
Article CAS Google Scholar
- Talanian, R.V., McKnight, C.J. & Kim, P.S. Sequence-specific DNA binding by a short peptide dimer. Science 249, 769–771 (1990).
Article CAS Google Scholar
- Weber, A.N. et al. Binding of the Drosophila cytokine Spatzle to Toll is direct and establishes signaling. Nat. Immunol. 4, 794–800 (2003).
Article CAS Google Scholar
- Bell, J.K., Askins, J., Hall, P.R., Davies, D.R. & Segal, D.M. The dsRNA binding site of human Toll-like receptor 3. Proc. Natl. Acad. Sci. USA 103, 8792–8797 (2006).
Article CAS Google Scholar
- Jiang, Z. et al. Details of Toll-like receptor:adapter interaction revealed by germ-line mutagenesis. Proc. Natl. Acad. Sci. USA 103, 10961–10966 (2006).
Article CAS Google Scholar
- Hemmi, H. et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat. Immunol. 3, 196–200 (2002).
Article CAS Google Scholar
- Lee, J. et al. Molecular basis for the immunostimulatory activity of guanine nucleoside analogs: activation of Toll-like receptor 7. Proc. Natl. Acad. Sci. USA 100, 6646–6651 (2003).
Article CAS Google Scholar
- Gorden, K.K. et al. Oligodeoxynucleotides differentially modulate activation of TLR7 and TLR8 by imidazoquinolines. J. Immunol. 177, 8164–8170 (2006).
Article CAS Google Scholar