- Longley, D.B. & Johnston, P.G. Molecular mechanisms of drug resistance. J. Pathol. 205, 275–292 (2005).
Article CAS Google Scholar
- Wang, T.L. et al. Digital karyotyping identifies thymidylate synthase amplification as a mechanism of resistance to 5-fluorouracil in metastatic colorectal cancer patients. Proc. Natl. Acad. Sci. USA 101, 3089–3094 (2004).
Article CAS Google Scholar
- Schmitt, C.A., Rosenthal, C.T. & Lowe, S.W. Genetic analysis of chemoresistance in primary murine lymphomas. Nat. Med. 6, 1029–1035 (2000).
Article CAS Google Scholar
- Helmrich, A. et al. Recurrent chromosomal aberrations in INK4a/ARF defective primary lymphomas predict drug responses in vivo. Oncogene 24, 4174–4182 (2005).
Article CAS Google Scholar
- Redmond, K.M., Wilson, T.R., Johnston, P.G. & Longley, D.B. Resistance mechanisms to cancer chemotherapy. Front. Biosci. 13, 5138–5154 (2008).
Article CAS Google Scholar
- Wilson, T.R., Longley, D.B. & Johnston, P.G. Chemoresistance in solid tumours. Ann. Oncol. 17 (suppl. 10), x315–x324 (2006).
Article Google Scholar
- Lee, S. & Schmitt, C.A. Chemotherapy response and resistance. Curr. Opin. Genet. Dev. 13, 90–96 (2003).
Article CAS Google Scholar
- Sakai, W. et al. Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. Nature 451, 1116–1120 (2008).
Article CAS Google Scholar
- Kobayashi, H. et al. Acquired multicellular-mediated resistance to alkylating agents in cancer. Proc. Natl. Acad. Sci. USA 90, 3294–3298 (1993).
Article CAS Google Scholar
- Waldman, T. et al. Cell-cycle arrest versus cell death in cancer therapy. Nat. Med. 3, 1034–1036 (1997).
Article CAS Google Scholar
- Samson, D.J., Seidenfeld, J., Ziegler, K. & Aronson, N. Chemotherapy sensitivity and resistance assays: a systematic review. J. Clin. Oncol. 22, 3618–3630 (2004).
Article CAS Google Scholar
- Croix, B.S. et al. Reversal by hyaluronidase of adhesion-dependent multicellular drug resistance in mammary carcinoma cells. J. Natl. Cancer Inst. 88, 1285–1296 (1996).
Article CAS Google Scholar
- Kerbel, R.S. Molecular and physiologic mechanisms of drug resistance in cancer: an overview. Cancer Metastasis Rev. 20, 1–2 (2001).
Article CAS Google Scholar
- Wang, F. et al. Phenotypic reversion or death of cancer cells by altering signaling pathways in three-dimensional contexts. J. Natl. Cancer Inst. 94, 1494–1503 (2002).
Article CAS Google Scholar
- Kim, J.J. & Tannock, I.F. Repopulation of cancer cells during therapy: an important cause of treatment failure. Nat. Rev. Cancer 5, 516–525 (2005).
Article CAS Google Scholar
- Trédan, O., Galmarini, C.M., Patel, K. & Tannock, I.F. Drug resistance and the solid tumor microenvironment. J. Natl. Cancer Inst. 99, 1441–1454 (2007).
Article Google Scholar
- Garzotto, M., Myrthue, A., Higano, C.S. & Beer, T.M. Neoadjuvant mitoxantrone and docetaxel for high-risk localized prostate cancer. Urol. Oncol. 24, 254–259 (2006).
Article CAS Google Scholar
- Beer, T.M. et al. Phase I study of weekly mitoxantrone and docetaxel before prostatectomy in patients with high-risk localized prostate cancer. Clin. Cancer Res. 10, 1306–1311 (2004).
Article CAS Google Scholar
- Bavik, C. et al. The gene expression program of prostate fibroblast senescence modulates neoplastic epithelial cell proliferation through paracrine mechanisms. Cancer Res. 66, 794–802 (2006).
Article CAS Google Scholar
- Coppé, J.P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6, 2853–2868 (2008).
Article Google Scholar
- Clevers, H. Wnt/β-catenin signaling in development and disease. Cell 127, 469–480 (2006).
Article CAS Google Scholar
- Binet, R. et al. WNT16B is a new marker of cellular senescence that regulates p53 activity and the phosphoinositide 3-kinase/AKT pathway. Cancer Res. 69, 9183–9191 (2009).
Article CAS Google Scholar
- Acosta, J.C. et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133, 1006–1018 (2008).
Article CAS Google Scholar
- Huang, S.M. et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461, 614–620 (2009).
Article CAS Google Scholar
- Thiery, J.P., Acloque, H., Huang, R.Y. & Nieto, M.A. Epithelial-mesenchymal transitions in development and disease. Cell 139, 871–890 (2009).
Article CAS Google Scholar
- Yook, J.I. et al. A Wnt-Axin2–GSK3β cascade regulates Snail1 activity in breast cancer cells. Nat. Cell Biol. 8, 1398–1406 (2006).
Article CAS Google Scholar
- Vincan, E. & Barker, N. The upstream components of the Wnt signalling pathway in the dynamic EMT and MET associated with colorectal cancer progression. Clin. Exp. Metastasis 25, 657–663 (2008).
Article CAS Google Scholar
- Wu, K. & Bonavida, B. The activated NF-κB–Snail–RKIP circuitry in cancer regulates both the metastatic cascade and resistance to apoptosis by cytotoxic drugs. Crit. Rev. Immunol. 29, 241–254 (2009).
Article CAS Google Scholar
- Peinado, H., Olmeda, D. & Cano, A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat. Rev. Cancer 7, 415–428 (2007).
Article CAS Google Scholar
- Bernard, D. et al. Involvement of Rel/nuclear factor-κB transcription factors in keratinocyte senescence. Cancer Res. 64, 472–481 (2004).
Article CAS Google Scholar
- Berchtold, C.M., Wu, Z.H., Huang, T.T. & Miyamoto, S. Calcium-dependent regulation of NEMO nuclear export in response to genotoxic stimuli. Mol. Cell. Biol. 27, 497–509 (2007).
Article CAS Google Scholar
- Kuilman, T. et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133, 1019–1031 (2008).
Article CAS Google Scholar
- Kuilman, T. & Peeper, D.S. Senescence-messaging secretome: SMS-ing cellular stress. Nat. Rev. Cancer 9, 81–94 (2009).
Article CAS Google Scholar
- Fumagalli, M. & d'Adda di Fagagna, F. SASPense and DDRama in cancer and ageing. Nat. Cell Biol. 11, 921–923 (2009).
Article CAS Google Scholar
- Michaloglou, C. et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436, 720–724 (2005).
Article CAS Google Scholar
- Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656–660 (2007).
Article CAS Google Scholar
- Wajapeyee, N., Serra, R.W., Zhu, X., Mahalingam, M. & Green, M.R. Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell 132, 363–374 (2008).
Article CAS Google Scholar
- Coppé, J.P., Kauser, K., Campisi, J. & Beausejour, C.M. Secretion of vascular endothelial growth factor by primary human fibroblasts at senescence. J. Biol. Chem. 281, 29568–29574 (2006).
Article Google Scholar
- Gilbert, L.A. & Hemann, M.T. DNA damage–mediated induction of a chemoresistant niche. Cell 143, 355–366 (2010).
Article CAS Google Scholar
- Biswas, S. et al. Inhibition of TGF-β with neutralizing antibodies prevents radiation-induced acceleration of metastatic cancer progression. J. Clin. Invest. 117, 1305–1313 (2007).
Article CAS Google Scholar
- Davis, A.J. & Tannock, J.F. Repopulation of tumour cells between cycles of chemotherapy: a neglected factor. Lancet Oncol. 1, 86–93 (2000).
Article CAS Google Scholar
- Meads, M.B., Hazlehurst, L.A. & Dalton, W.S. The bone marrow microenvironment as a tumor sanctuary and contributor to drug resistance. Clin. Cancer Res. 14, 2519–2526 (2008).
Article CAS Google Scholar
- Shree, T. et al. Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer. Genes Dev. 25, 2465–2479 (2011).
Article CAS Google Scholar
- DeNardo, D.G. et al. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov. 1, 54–67 (2011).
Article CAS Google Scholar
- Chien, Y. et al. Control of the senescence-associated secretory phenotype by NF-κB promotes senescence and enhances chemosensitivity. Genes Dev. 25, 2125–2136 (2011).
Article CAS Google Scholar
- Alderton, P.M., Gross, J. & Green, M.D. Comparative study of doxorubicin, mitoxantrone, and epirubicin in combination with ICRF-187 (ADR-529) in a chronic cardiotoxicity animal model. Cancer Res. 52, 194–201 (1992).
CAS Google Scholar