Montarras, D., L'Honore, A. & Buckingham, M. Lying low but ready for action: the quiescent muscle satellite cell. FEBS J.280, 4036–4050 (2013). ArticleCASPubMed Google Scholar
Cerletti, M. et al. Highly efficient, functional engraftment of skeletal muscle stem cells in dystrophic muscles. Cell134, 37–47 (2008). ArticleCASPubMedPubMed Central Google Scholar
Kuang, S., Kuroda, K., Le Grand, F. & Rudnicki, M.A. Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell129, 999–1010 (2007). ArticleCASPubMedPubMed Central Google Scholar
Lepper, C. & Fan, C.M. Inducible lineage tracing of Pax7-descendant cells reveals embryonic origin of adult satellite cells. Genesis48, 424–436 (2010). ArticleCASPubMedPubMed Central Google Scholar
Montarras, D. et al. Direct isolation of satellite cells for skeletal muscle regeneration. Science309, 2064–2067 (2005). ArticleCASPubMed Google Scholar
Sacco, A., Doyonnas, R., Kraft, P., Vitorovic, S. & Blau, H.M. Self-renewal and expansion of single transplanted muscle stem cells. Nature456, 502–506 (2008). ArticleCASPubMedPubMed Central Google Scholar
von Maltzahn, J., Jones, A.E., Parks, R.J. & Rudnicki, M.A. Pax7 is critical for the normal function of satellite cells in adult skeletal muscle. Proc. Natl. Acad. Sci. USA110, 16474–16479 (2013). ArticleCASPubMedPubMed Central Google Scholar
Günther, S. et al. Myf5-positive satellite cells contribute to Pax7-dependent long-term maintenance of adult muscle stem cells. Cell Stem Cell13, 590–601 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Chakkalakal, J.V., Jones, K.M., Basson, M.A. & Brack, A.S. The aged niche disrupts muscle stem cell quiescence. Nature490, 355–360 (2012). ArticleCASPubMedPubMed Central Google Scholar
Sambasivan, R. et al. Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development138, 3647–3656 (2011). ArticleCASPubMed Google Scholar
Gopinath, S.D., Webb, A.E., Brunet, A. & Rando, T.A. FOXO3 promotes quiescence in adult muscle stem cells during the process of self-renewal. Stem Cell Rep.2, 414–426 (2014). ArticleCAS Google Scholar
Rocheteau, P., Gayraud-Morel, B., Siegl-Cachedenier, I., Blasco, M.A. & Tajbakhsh, S. A subpopulation of adult skeletal muscle stem cells retains all template DNA strands after cell division. Cell148, 112–125 (2012). ArticleCASPubMed Google Scholar
Fry, C.S. et al. Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative capacity without affecting sarcopenia. Nat. Med.21, 76–80 (2015). ArticleCASPubMed Google Scholar
Dumont, N.A., Wang, Y.X. & Rudnicki, M.A. Intrinsic and extrinsic mechanisms regulating satellite cell function. Development142, 1572–1581 (2015). ArticleCASPubMedPubMed Central Google Scholar
Cornelison, D.D., Filla, M.S., Stanley, H.M., Rapraeger, A.C. & Olwin, B.B. Syndecan-3 and syndecan-4 specifically mark skeletal muscle satellite cells and are implicated in satellite cell maintenance and muscle regeneration. Dev. Biol.239, 79–94 (2001). ArticleCASPubMed Google Scholar
Kuang, S., Gillespie, M.A. & Rudnicki, M.A. Niche regulation of muscle satellite cell self-renewal and differentiation. Cell Stem Cell2, 22–31 (2008). ArticleCASPubMed Google Scholar
Fukada, S. et al. Molecular signature of quiescent satellite cells in adult skeletal muscle. Stem Cells25, 2448–2459 (2007). ArticleCASPubMed Google Scholar
Keefe, A.C. et al. Muscle stem cells contribute to myofibres in sedentary adult mice. Nat. Commun.6, 7087 (2015). ArticleCASPubMed Google Scholar
Cosgrove, B.D. et al. Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nat. Med.20, 255–264 (2014). ArticleCASPubMedPubMed Central Google Scholar
Cosgrove, B.D., Sacco, A., Gilbert, P.M. & Blau, H.M. A home away from home: challenges and opportunities in engineering in vitro muscle satellite cell niches. Differentiation78, 185–194 (2009). ArticleCASPubMedPubMed Central Google Scholar
Carlson, B.M. & Faulkner, J.A. Muscle transplantation between young and old rats: age of host determines recovery. Am. J. Physiol.256, C1262–C1266 (1989). ArticleCASPubMed Google Scholar
Carlson, B.M., Dedkov, E.I., Borisov, A.B. & Faulkner, J.A. Skeletal muscle regeneration in very old rats. J. Gerontol. A Biol. Sci. Med. Sci.56, B224–B233 (2001). ArticleCASPubMed Google Scholar
Brack, A.S. et al. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science317, 807–810 (2007). ArticleCASPubMed Google Scholar
Conboy, I.M. et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature433, 760–764 (2005). ArticleCASPubMed Google Scholar
Johansson, C.B. et al. Extensive fusion of haematopoietic cells with Purkinje neurons in response to chronic inflammation. Nat. Cell Biol.10, 575–583 (2008). ArticleCASPubMedPubMed Central Google Scholar
Brack, A.S., Conboy, I.M., Conboy, M.J., Shen, J. & Rando, T.A. A temporal switch from notch to Wnt signaling in muscle stem cells is necessary for normal adult myogenesis. Cell Stem Cell2, 50–59 (2008). ArticleCASPubMed Google Scholar
Conboy, I.M., Conboy, M.J., Smythe, G.M. & Rando, T.A. Notch-mediated restoration of regenerative potential to aged muscle. Science302, 1575–1577 (2003). ArticleCASPubMed Google Scholar
Mourikis, P. et al. A critical requirement for notch signaling in maintenance of the quiescent skeletal muscle stem cell state. Stem Cells30, 243–252 (2012). ArticleCASPubMed Google Scholar
Elabd, C. et al. Oxytocin is an age-specific circulating hormone that is necessary for muscle maintenance and regeneration. Nat. Commun.5, 4082 (2014). ArticleCASPubMed Google Scholar
Sinha, M. et al. Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science344, 649–652 (2014). ArticleCASPubMedPubMed Central Google Scholar
Loffredo, F.S. et al. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell153, 828–839 (2013). ArticleCASPubMedPubMed Central Google Scholar
Nakashima, M., Toyono, T., Akamine, A. & Joyner, A. Expression of growth/differentiation factor 11, a new member of the BMP/TGFβ superfamily during mouse embryogenesis. Mech. Dev.80, 185–189 (1999). ArticleCASPubMed Google Scholar
Lee, S.J. Regulation of muscle mass by myostatin. Annu. Rev. Cell Dev. Biol.20, 61–86 (2004). ArticleCASPubMed Google Scholar
Lee, Y.S. & Lee, S.J. Regulation of GDF-11 and myostatin activity by GASP-1 and GASP-2. Proc. Natl. Acad. Sci. USA110, E3713–E3722 (2013). ArticleCASPubMedPubMed Central Google Scholar
McPherron, A.C. & Lee, S.J. Double muscling in cattle due to mutations in the myostatin gene. Proc. Natl. Acad. Sci. USA94, 12457–12461 (1997). ArticleCASPubMedPubMed Central Google Scholar
Kambadur, R., Sharma, M., Smith, T.P. & Bass, J.J. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res.7, 910–916 (1997). ArticleCASPubMed Google Scholar
McPherron, A.C., Lawler, A.M. & Lee, S.J. Regulation of anterior/posterior patterning of the axial skeleton by growth/differentiation factor 11. Nat. Genet.22, 260–264 (1999). ArticleCASPubMed Google Scholar
Brack, A.S. & Rando, T.A. Intrinsic changes and extrinsic influences of myogenic stem cell function during aging. Stem Cell Rev.3, 226–237 (2007). ArticleCASPubMed Google Scholar
García-Prat, L., Sousa-Victor, P. & Munoz-Canoves, P. Functional dysregulation of stem cells during aging: a focus on skeletal muscle stem cells. FEBS J.280, 4051–4062 (2013). ArticleCASPubMed Google Scholar
Notta, F. et al. Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment. Science333, 218–221 (2011). ArticleCASPubMed Google Scholar
Bernet, J.D. et al. p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat. Med.20, 265–271 (2014). ArticleCASPubMedPubMed Central Google Scholar
Sousa-Victor, P. et al. Geriatric muscle stem cells switch reversible quiescence into senescence. Nature506, 316–321 (2014). ArticleCASPubMed Google Scholar
Palacios, D. et al. TNF/p38alpha/polycomb signaling to Pax7 locus in satellite cells links inflammation to the epigenetic control of muscle regeneration. Cell Stem Cell7, 455–469 (2010). ArticleCASPubMedPubMed Central Google Scholar
Troy, A. et al. Coordination of satellite cell activation and self-renewal by Par-complex-dependent asymmetric activation of p38alpha/beta MAPK. Cell Stem Cell11, 541–553 (2012). ArticleCASPubMedPubMed Central Google Scholar
Baker, D.J. et al. Opposing roles for p16Ink4a and p19Arf in senescence and ageing caused by BubR1 insufficiency. Nat. Cell Biol.10, 825–836 (2008). ArticleCASPubMedPubMed Central Google Scholar
Hall, J.K., Banks, G.B., Chamberlain, J.S. & Olwin, B.B. Prevention of muscle aging by myofiber-associated satellite cell transplantation. Sci. Transl. Med.2, 57ra83 (2010). ArticleCASPubMedPubMed Central Google Scholar
Chakkalakal, J.V. et al. Early forming label-retaining muscle stem cells require p27kip1 for maintenance of the primitive state. Development141, 1649–1659 (2014). ArticleCASPubMedPubMed Central Google Scholar
Conboy, M.J., Karasov, A.O. & Rando, T.A. High incidence of non-random template strand segregation and asymmetric fate determination in dividing stem cells and their progeny. PLoS Biol.5, e102 (2007). ArticlePubMedPubMed Central Google Scholar
Shinin, V., Gayraud-Morel, B., Gomes, D. & Tajbakhsh, S. Asymmetric division and cosegregation of template DNA strands in adult muscle satellite cells. Nat. Cell Biol.8, 677–687 (2006). ArticleCASPubMed Google Scholar
Bouché, M., Munoz-Canoves, P., Rossi, F. & Coletti, D. Inflammation in muscle repair, aging, and myopathies. Biomed Res. Int.2014, 821950 (2014). ArticlePubMedPubMed Central Google Scholar
Tidball, J.G. Mechanisms of muscle injury, repair, and regeneration. Compr. Physiol.1, 2029–2062 (2011). PubMed Google Scholar
Bosurgi, L., Manfredi, A.A. & Rovere-Querini, P. Macrophages in injured skeletal muscle: a perpetuum mobile causing and limiting fibrosis, prompting or restricting resolution and regeneration. Front. Immunol.2, 62 (2011). ArticlePubMedPubMed Central Google Scholar
Chazaud, B. Macrophages: supportive cells for tissue repair and regeneration. Immunobiology219, 172–178 (2014). ArticleCASPubMed Google Scholar
Arnold, L. et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J. Exp. Med.204, 1057–1069 (2007). ArticleCASPubMedPubMed Central Google Scholar
Cheng, M., Nguyen, M.H., Fantuzzi, G. & Koh, T.J. Endogenous interferon-gamma is required for efficient skeletal muscle regeneration. Am. J. Physiol. Cell Physiol.294, C1183–C1191 (2008). ArticleCASPubMed Google Scholar
Perdiguero, E. et al. p38/MKP-1-regulated AKT coordinates macrophage transitions and resolution of inflammation during tissue repair. J. Cell Biol.195, 307–322 (2011). ArticleCASPubMedPubMed Central Google Scholar
Collins, C.A., Zammit, P.S., Ruiz, A.P., Morgan, J.E. & Partridge, T.A. A population of myogenic stem cells that survives skeletal muscle aging. Stem Cells25, 885–894 (2007). ArticleCASPubMed Google Scholar
Coppé, J.P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol.6, 2853–2868 (2008). ArticlePubMedCAS Google Scholar
Demaria, M. et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell31, 722–733 (2014). ArticleCASPubMedPubMed Central Google Scholar
Joe, A.W. et al. Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat. Cell Biol.12, 153–163 (2010). ArticleCASPubMedPubMed Central Google Scholar
Uezumi, A., Fukada, S., Yamamoto, N., Takeda, S. & Tsuchida, K. Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat. Cell Biol.12, 143–152 (2010). ArticleCASPubMed Google Scholar
Pretheeban, T., Lemos, D.R., Paylor, B., Zhang, R.H. & Rossi, F.M. Role of stem/progenitor cells in reparative disorders. Fibrogenesis Tissue Repair5, 20 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Heredia, J.E. et al. Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration. Cell153, 376–388 (2013). ArticleCASPubMedPubMed Central Google Scholar
Lemos, D.R. et al. Nilotinib reduces muscle fibrosis in chronic muscle injury by promoting TNF-mediated apoptosis of fibro/adipogenic progenitors. Nat. Med.21, 786–794 (2015). ArticleCASPubMed Google Scholar
Murphy, M.M., Lawson, J.A., Mathew, S.J., Hutcheson, D.A. & Kardon, G. Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development138, 3625–3637 (2011). ArticleCASPubMedPubMed Central Google Scholar
Serrano, A.L. et al. Cellular and molecular mechanisms regulating fibrosis in skeletal muscle repair and disease. Curr. Top. Dev. Biol.96, 167–201 (2011). ArticleCASPubMed Google Scholar
Thorsteinsdóttir, S., Deries, M., Cachaco, A.S. & Bajanca, F. The extracellular matrix dimension of skeletal muscle development. Dev. Biol.354, 191–207 (2011). ArticlePubMedCAS Google Scholar
Kothari, P. et al. IL-6-mediated induction of matrix metalloproteinase-9 is modulated by JAK-dependent IL-10 expression in macrophages. J. Immunol.192, 349–357 (2014). ArticleCASPubMed Google Scholar
Yu, Q. & Stamenkovic, I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-β and promotes tumor invasion and angiogenesis. Genes Dev.14, 163–176 (2000). PubMedPubMed Central Google Scholar
Philippou, A., Maridaki, M. & Koutsilieris, M. The role of urokinase-type plasminogen activator (uPA) and transforming growth factor beta 1 (TGFβ1) in muscle regeneration. In Vivo22, 735–750 (2008). CASPubMed Google Scholar
Snow, M.H. The effects of aging on satellite cells in skeletal muscles of mice and rats. Cell Tissue Res.185, 399–408 (1977). ArticleCASPubMed Google Scholar
Kovanen, V., Suominen, H., Risteli, J. & Risteli, L. Type IV collagen and laminin in slow and fast skeletal muscle in rats–effects of age and life-time endurance training. Coll. Relat. Res.8, 145–153 (1988). ArticleCASPubMed Google Scholar
Alexakis, C., Partridge, T. & Bou-Gharios, G. Implication of the satellite cell in dystrophic muscle fibrosis: a self-perpetuating mechanism of collagen overproduction. Am. J. Physiol. Cell Physiol.293, C661–C669 (2007). ArticleCASPubMed Google Scholar
Scimè, A. et al. Transcriptional profiling of skeletal muscle reveals factors that are necessary to maintain satellite cell integrity during ageing. Mech. Ageing Dev.131, 9–20 (2010). ArticlePubMedCAS Google Scholar
Paliwal, P., Pishesha, N., Wijaya, D. & Conboy, I.M. Age dependent increase in the levels of osteopontin inhibits skeletal muscle regeneration. Aging (Albany, NY)4, 553–566 (2012). ArticleCASPubMed Central Google Scholar
Rosant, C., Nagel, M.D. & Perot, C. Aging affects passive stiffness and spindle function of the rat soleus muscle. Exp. Gerontol.42, 301–308 (2007). ArticlePubMed Google Scholar
Gao, Y., Kostrominova, T.Y., Faulkner, J.A. & Wineman, A.S. Age-related changes in the mechanical properties of the epimysium in skeletal muscles of rats. J. Biomech.41, 465–469 (2008). ArticlePubMed Google Scholar
Engler, A.J. et al. Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J. Cell Biol.166, 877–887 (2004). ArticleCASPubMedPubMed Central Google Scholar
Boonen, K.J., Rosaria-Chak, K.Y., Baaijens, F.P., van der Schaft, D.W. & Post, M.J. Essential environmental cues from the satellite cell niche: optimizing proliferation and differentiation. Am. J. Physiol. Cell Physiol.296, C1338–C1345 (2009). ArticleCASPubMed Google Scholar
Liu, H., Niu, A., Chen, S.E. & Li, Y.P. Beta3-integrin mediates satellite cell differentiation in regenerating mouse muscle. FASEB J.25, 1914–1921 (2011). ArticleCASPubMedPubMed Central Google Scholar
Wang, H.V. et al. Integrin-linked kinase stabilizes myotendinous junctions and protects muscle from stress-induced damage. J. Cell Biol.180, 1037–1049 (2008). ArticleCASPubMedPubMed Central Google Scholar
Pisconti, A., Cornelison, D.D., Olguin, H.C., Antwine, T.L. & Olwin, B.B. Syndecan-3 and Notch cooperate in regulating adult myogenesis. J. Cell Biol.190, 427–441 (2010). ArticleCASPubMedPubMed Central Google Scholar
Urciuolo, A. et al. Collagen VI regulates satellite cell self-renewal and muscle regeneration. Nat. Commun.4, 1964 (2013). ArticlePubMedCAS Google Scholar
Halder, G., Dupont, S. & Piccolo, S. Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat. Rev. Mol. Cell Biol.13, 591–600 (2012). ArticleCASPubMed Google Scholar
Pelissier, F.A. et al. Age-related dysfunction in mechanotransduction impairs differentiation of human mammary epithelial progenitors. Cell Rep7, 1926–1939 (2014). ArticleCASPubMedPubMed Central Google Scholar
Lechler, T. & Fuchs, E. Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature437, 275–280 (2005). ArticleCASPubMedPubMed Central Google Scholar
Quyn, A.J. et al. Spindle orientation bias in gut epithelial stem cell compartments is lost in precancerous tissue. Cell Stem Cell6, 175–181 (2010). ArticleCASPubMed Google Scholar
Liu, L. et al. Chromatin modifications as determinants of muscle stem cell quiescence and chronological aging. Cell Rep4, 189–204 (2013). ArticleCASPubMedPubMed Central Google Scholar
McKinnell, I.W. et al. Pax7 activates myogenic genes by recruitment of a histone methyltransferase complex. Nat. Cell Biol.10, 77–84 (2008). ArticleCASPubMed Google Scholar
Paylor, B., Natarajan, A., Zhang, R.H. & Rossi, F. Nonmyogenic cells in skeletal muscle regeneration. Curr. Top. Dev. Biol.96, 139–165 (2011). ArticleCASPubMed Google Scholar
Bentzinger, C.F., Wang, Y.X., Dumont, N.A. & Rudnicki, M.A. Cellular dynamics in the muscle satellite cell niche. EMBO Rep.14, 1062–1072 (2013). ArticleCASPubMedPubMed Central Google Scholar
Bonfanti, C. et al. PW1/Peg3 expression regluates key properties that determine mesoangioblast stem cell competence. Nat. Commun.6, 6364 (2015). ArticleCASPubMed Google Scholar
Campisi, J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell120, 513–522 (2005). ArticleCASPubMed Google Scholar
Discher, D.E., Mooney, D.J. & Zandstra, P.W. Growth factors, matrices, and forces combine and control stem cells. Science324, 1673–1677 (2009). ArticleCASPubMedPubMed Central Google Scholar
Paszek, M.J. et al. Tensional homeostasis and the malignant phenotype. Cancer Cell8, 241–254 (2005). ArticleCASPubMed Google Scholar
Humphrey, J.D., Dufresne, E.R. & Schwartz, M.A. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol.15, 802–812 (2014). ArticleCASPubMedPubMed Central Google Scholar