Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system (original) (raw)
Furness, J.B. The enteric nervous system and neurogastroenterology. Nat. Rev. Gastroenterol. Hepatol.9, 286–294 (2012). ArticleCASPubMed Google Scholar
Sasselli, V., Pachnis, V. & Burns, A.J. The enteric nervous system. Dev. Biol.366, 64–73 (2012). ArticleCASPubMed Google Scholar
Obermayr, F., Hotta, R., Enomoto, H. & Young, H.M. Development and developmental disorders of the enteric nervous system. Nat. Rev. Gastroenterol. Hepatol.10, 43–57 (2013). ArticleCASPubMed Google Scholar
Saffrey, M.J. Cellular changes in the enteric nervous system during ageing. Dev. Biol.382, 344–355 (2013). ArticleCASPubMed Google Scholar
McKeown, S.J., Stamp, L., Hao, M.M. & Young, H.M. Hirschsprung disease: a developmental disorder of the enteric nervous system. Wiley Interdiscip. Rev. Dev. Biol.2, 113–129 (2013). ArticleCASPubMed Google Scholar
Burns, A.J. & Thapar, N. Neural stem cell therapies for enteric nervous system disorders. Nat. Rev. Gastroenterol. Hepatol.11, 317–328 (2014). ArticlePubMed Google Scholar
Lancaster, M.A. & Knoblich, J.A. Organogenesis in a dish: modeling development and disease using organoid technologies. Science345, 1247125 (2014). ArticlePubMedCAS Google Scholar
McCracken, K.W., Howell, J.C., Wells, J.M. & Spence, J.R. Generating human intestinal tissue from pluripotent stem cells in vitro. Nat. Protoc.6, 1920–1928 (2011). ArticleCASPubMedPubMed Central Google Scholar
Spence, J.R. et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature470, 105–109 (2011). ArticlePubMedCAS Google Scholar
Mica, Y., Lee, G., Chambers, S.M., Tomishima, M.J. & Studer, L. Modeling neural crest induction, melanocyte specification, and disease-related pigmentation defects in hESCs and patient-specific iPSCs. Cell Rep.3, 1140–1152 (2013). ArticleCASPubMedPubMed Central Google Scholar
Kudoh, T., Wilson, S.W. & Dawid, I.B. Distinct roles for Fgf, Wnt and retinoic acid in posteriorizing the neural ectoderm. Development129, 4335–4346 (2002). ArticleCASPubMed Google Scholar
Fu, M., Tam, P.K., Sham, M.H. & Lui, V.C. Embryonic development of the ganglion plexuses and the concentric layer structure of human gut: a topographical study. Anat. Embryol. (Berl.)208, 33–41 (2004). ArticleCAS Google Scholar
Young, H.M., Ciampoli, D., Hsuan, J. & Canty, A.J. Expression of Ret-, p75(NTR)-, Phox2a-, Phox2b-, and tyrosine hydroxylase-immunoreactivity by undifferentiated neural crest-derived cells and different classes of enteric neurons in the embryonic mouse gut. Dev. Dyn.216, 137–152 (1999). ArticleCASPubMed Google Scholar
Young, H.M. et al. GDNF is a chemoattractant for enteric neural cells. Dev. Biol.229, 503–516 (2001). ArticleCASPubMed Google Scholar
Huebsch, N. et al. Automated video-based analysis of contractility and calcium flux in human-induced pluripotent stem cell-derived cardiomyocytes cultured over different spatial scales. Tissue Eng. Part C Methods21, 467–479 (2015). ArticleCASPubMedPubMed Central Google Scholar
Hao, M.M. et al. Enteric nervous system assembly: functional integration within the developing gut. Dev. Biol.417, 168–181 (2016). ArticleCASPubMed Google Scholar
Bohórquez, D.V. et al. Neuroepithelial circuit formed by innervation of sensory enteroendocrine cells. J. Clin. Invest.125, 782–786 (2015). ArticlePubMedPubMed Central Google Scholar
Bajaj, R. et al. Congenital central hypoventilation syndrome and Hirschsprung's disease in an extremely preterm infant. Pediatrics115, e737–e738 (2005). ArticlePubMed Google Scholar
Pattyn, A., Morin, X., Cremer, H., Goridis, C. & Brunet, J.F. The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature399, 366–370 (1999). ArticleCASPubMed Google Scholar
Fu, M., Lui, V.C., Sham, M.H., Cheung, A.N. & Tam, P.K. HOXB5 expression is spatially and temporarily regulated in human embryonic gut during neural crest cell colonization and differentiation of enteric neuroblasts. Dev. Dyn.228, 1–10 (2003). ArticleCASPubMed Google Scholar
Lui, V.C. et al. Perturbation of hoxb5 signaling in vagal neural crests down-regulates ret leading to intestinal hypoganglionosis in mice. Gastroenterology134, 1104–1115 (2008). ArticleCASPubMed Google Scholar
Denham, M. et al. Multipotent caudal neural progenitors derived from human pluripotent stem cells that give rise to lineages of the central and peripheral nervous system. Stem Cells33, 1759–1770 (2015). ArticleCASPubMedPubMed Central Google Scholar
Wallace, A.S. & Burns, A.J. Development of the enteric nervous system, smooth muscle and interstitial cells of Cajal in the human gastrointestinal tract. Cell Tissue Res.319, 367–382 (2005). ArticlePubMed Google Scholar
Bergner, A.J. et al. Birthdating of myenteric neuron subtypes in the small intestine of the mouse. J. Comp. Neurol.522, 514–527 (2014). ArticleCASPubMed Google Scholar
Erickson, C.S. et al. Appearance of cholinergic myenteric neurons during enteric nervous system development: comparison of different ChAT fluorescent mouse reporter lines. Neurogastroenterol. Motil.26, 874–884 (2014). ArticleCASPubMedPubMed Central Google Scholar
Baetge, G. & Gershon, M.D. Transient catecholaminergic (TC) cells in the vagus nerves and bowel of fetal mice: relationship to the development of enteric neurons. Dev. Biol.132, 189–211 (1989). ArticleCASPubMed Google Scholar
Blaugrund, E. et al. Distinct subpopulations of enteric neuronal progenitors defined by time of development, sympathoadrenal lineage markers and Mash-1-dependence. Development122, 309–320 (1996). ArticleCASPubMed Google Scholar
Anlauf, M., Schäfer, M.K., Eiden, L. & Weihe, E. Chemical coding of the human gastrointestinal nervous system: cholinergic, VIPergic, and catecholaminergic phenotypes. J. Comp. Neurol.459, 90–111 (2003). ArticleCASPubMed Google Scholar
Anderson, G. et al. Loss of enteric dopaminergic neurons and associated changes in colon motility in an MPTP mouse model of Parkinson's disease. Exp. Neurol.207, 4–12 (2007). ArticleCASPubMedPubMed Central Google Scholar
Burns, A.J. et al. White paper on guidelines concerning enteric nervous system stem cell therapy for enteric neuropathies. Dev. Biol.417, 229–251 (2016). ArticleCASPubMedPubMed Central Google Scholar
Fattahi, F. et al. Deriving human ENS lineages for cell therapy and drug discovery in Hirschsprung disease. Nature531, 105–109 (2016). ArticleCASPubMedPubMed Central Google Scholar
Hotta, R. et al. Transplanted progenitors generate functional enteric neurons in the postnatal colon. J. Clin. Invest.123, 1182–1191 (2013). ArticleCASPubMedPubMed Central Google Scholar
Lindley, R.M. et al. Human and mouse enteric nervous system neurosphere transplants regulate the function of aganglionic embryonic distal colon. Gastroenterology135, 205–216 (2008). ArticlePubMed Google Scholar
Burns, A.J., Roberts, R.R., Bornstein, J.C. & Young, H.M. Development of the enteric nervous system and its role in intestinal motility during fetal and early postnatal stages. Semin. Pediatr. Surg.18, 196–205 (2009). ArticlePubMed Google Scholar
Miyaoka, Y. et al. Isolation of single-base genome-edited human iPS cells without antibiotic selection. Nat. Methods11, 291–293 (2014). ArticleCASPubMedPubMed Central Google Scholar
Costa, M. et al. A method for genetic modification of human embryonic stem cells using electroporation. Nat. Protoc.2, 792–796 (2007). ArticleCASPubMed Google Scholar
Tang, W. et al. Faithful expression of multiple proteins via 2A-peptide self-processing: a versatile and reliable method for manipulating brain circuits. J. Neurosci.29, 8621–8629 (2009). ArticleCASPubMedPubMed Central Google Scholar
Lee, G. et al. Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nat. Biotechnol.25, 1468–1475 (2007). ArticleCASPubMed Google Scholar
Chen, J., Bardes, E.E., Aronow, B.J. & Jegga, A.G. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res.37, W305–11 (2009). ArticleCASPubMedPubMed Central Google Scholar
Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One6, e21800 (2011). ArticleCASPubMedPubMed Central Google Scholar