Molecular regulation of vessel maturation (original) (raw)
Folkman, J. Angiogenesis. in Harrison's Principles of International Medicine (eds. Braunwald, E. et al.) 517–530 (McGraw-Hill, New York, 2001). Google Scholar
Yancopoulos, G.D. et al. Vascular-specific growth factors and blood vessel formation. Nature407, 242–248 (2000). ArticleCASPubMed Google Scholar
Carmeliet, P. & Jain, R.K. Angiogenesis in cancer and other diseases. Nature407, 249–257 (2000). ArticleCASPubMed Google Scholar
Nguyen, L.L. & D'Amore, P.A. Cellular interactions in vascular growth and differentiation. Int. Rev. Cytol.204, 1–48 (2001). ArticleCASPubMed Google Scholar
Rossant, J. & Howard, L. Signaling pathways in vascular development. Annu. Rev. Cell Dev. Biol.18, 541–573 (2002). ArticleCASPubMed Google Scholar
Ferrara, N. VEGF and the quest for tumour angiogenesis factors. Nat. Rev. Cancer2, 795–803 (2002). ArticleCASPubMed Google Scholar
Nagy, J.A. et al. VEGF-A induces angiogenesis, arteriogenesis, lymphangiogenesis, and vascular malformations. Cold Spring Harbor Symposium on Quantitative Biology67, 227–237 (2002). Google Scholar
Hellstrom, M. et al. Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J. Cell Biol.153, 543–553 (2001). ArticleCASPubMedPubMed Central Google Scholar
Kluk, M.J. & Hla, T. Signaling of sphingosine-1-phosphate via the S1P/EDG-family of G-protein-coupled receptors. Biochim. Biophys. Acta1582, 72–80 (2002). ArticleCASPubMed Google Scholar
Kluk, M.J., Colmont, C., Wu, M.T. & Hla, T. Platelet-derived growth factor (PDGF)-induced chemotaxis does not require the G protein-coupled receptor S1P1 in murine embryonic fibroblasts and vascular smooth muscle cells. FEBS Lett.533, 25–28 (2003). ArticleCASPubMed Google Scholar
Cho, H., Kozasa, T., Bondjers, C., Betsholtz, C. & Kehrl, J.H. Pericyte-specific expression of Rgs5: implications for PDGF and EDG receptor signaling during vascular maturation. FASEB J.13, 440–442 (2003). Google Scholar
Loughna, S. & Sato, T.N. Angiopoietin and Tie signaling pathways in vascular development. Matrix Biol.20, 319–325 (2001). ArticleCASPubMed Google Scholar
Uemura, A. et al. Recombinant angiopoietin-1 restores higher-order architecture of growing blood vessels in mice in the absence of mural cells. J. Clin. Invest.110, 1619–1628 (2002). ArticleCASPubMedPubMed Central Google Scholar
Pepper, M.S. Transforming growth factor-β: vasculogenesis, angiogenesis, and vessel wall integrity. Cytokine Growth Factor Rev.8, 21–43 (1997). ArticleCASPubMed Google Scholar
Chambers, R.C., Leoni, P., Kaminski, N., Laurent, G.J. & Heller, R.A. Global expression profiling of fibroblast responses to transforming growth factor-β(1) reveals the induction of inhibitor of differentiation-1 and provides evidence of smooth muscle cell phenotypic switching. Am. J. Pathol.162, 533–546 (2003). ArticleCASPubMedPubMed Central Google Scholar
Gohongi, T. et al. Tumor-host interactions in the gallbladder suppress distal angiogenesis and tumor growth: involvement of transforming growth factor β1. Nat. Med.5, 1203–1208 (1999). ArticleCASPubMed Google Scholar
Weinstein, M., Yang, X. & Deng, C. Functions of mammalian Smad genes as revealed by targeted gene disruption in mice. Cytokine Growth Factor Rev.11, 49–58 (2000). ArticleCASPubMed Google Scholar
Goumans, M.J. et al. Balancing the activation state of the endothelium via two distinct TGF-β type I receptors. EMBO J.21, 1743–1753 (2002). ArticleCASPubMedPubMed Central Google Scholar
Mukouyama, Y.S., Shin, D., Britsch, S., Taniguchi, M. & Anderson, D.J. Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin. Cell109, 693–705 (2002). ArticleCASPubMed Google Scholar
Neufeld, G. et al. The neuropilins: multifunctional semaphorin and VEGF receptors that modulate axon guidance and angiogenesis. Trends Cardiovasc. Med.12, 13–19 (2002). ArticleCASPubMed Google Scholar
Kalluri, R. Basement membranes: structural features, assembly, cellular interactions and role in cancer angiogenesis. Nat. Rev. Cancer (in the press).
Lawler, J. The functions of thrombospondin-1 and-2. Curr. Opin. Cell Biol.12, 634–640 (2000). ArticleCASPubMed Google Scholar
Hynes, R.O. A reevaluation of integrins as regulators of angiogenesis. Nat. Med.8, 918–921 (2002). ArticleCASPubMed Google Scholar
Stupack, D.G. & Cheresh, D.A. Get a ligand, get a life: integrins, signaling and cell survival. J. Cell Sci.115, 3729–3738 (2002). ArticleCASPubMed Google Scholar
Drake, C.J., Cheresh, D.A. & Little, C.D. An antagonist of integrin αVβ3 prevents maturation of blood vessels during embryonic neovascularization. J. Cell Sci.108, 2655–2661 (1995). ArticleCASPubMed Google Scholar
Ruoslahti, E. Specialization of tumour vasculature. Nat. Rev. Cancer2, 83–90 (2002). ArticlePubMed Google Scholar
Alitalo, K. & Carmeliet, P. Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell1, 219–227 (2002). ArticleCASPubMed Google Scholar
Wilting, J., Tomarev, S. & Christ, B. Lymphangioblasts in embryonic lymphangiogenesis. Lymphatic Res. Biol.1, 33–44 (2003). Article Google Scholar
Salven, P., Mustjoki, S., Alitalo, R., Alitalo, K. & Rafii, S. VEGFR-3 and CD133 identify a population of CD34+ lymphatic/vascular endothelial precursor cells. Blood101, 168–172 (2003). ArticleCASPubMed Google Scholar
Jain, R.K. & Padera, T.P. Development. Lymphatics make the break. Science299, 209–210 (2003). ArticleCASPubMed Google Scholar
Boardman, K.C. & Swartz, M.A. Interstitial flow as a guide for lymphangiogenesis. Circ. Res.92, 801–808 (2003). ArticleCASPubMed Google Scholar
Topper, J.N. & Gimbrone, M.A., Jr. Blood flow and vascular gene expression: fluid shear stress as a modulator of endothelial phenotype. Mol. Med. Today5, 40–46 (1999). ArticleCASPubMed Google Scholar
Semenza, G.L. HIF-1 and mechanisms of hypoxia sensing. Curr. Opin. Cell Biol.13, 167–171 (2001). ArticleCASPubMed Google Scholar
Xu, L., Fukumura, D. & Jain, R.K. Acidic extracellular pH induces vascular endothelial growth factor (VEGF) in human glioblastoma cells via ERK1/2 MAPK signaling pathway: mechanism of low pH-induced VEGF. J. Biol. Chem.277, 11368–11374 (2002). ArticleCASPubMed Google Scholar
Helisch, A. & Schaper, W. Arteriogenesis - the development and growth of collateral arteries. Microcirculation10, 83–97 (2003). ArticlePubMed Google Scholar
Tomasek, J.J., Gabbiani, G., Hinz, B., Chaponnier, C. & Brown, R.A. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol.3, 349–363 (2002). ArticleCASPubMed Google Scholar
Zawicki, D.F., Jain, R.K., Schmid-Schoenbein, G.W. & Chien, S. Dynamics of neovascularization in normal tissue. Microvasc. Res.21, 27–47 (1981). ArticleCASPubMed Google Scholar
Bloch, W. et al. The angiogenesis inhibitor endostatin impairs blood vessel maturation during wound healing. FASEB J.14, 2373–2376 (2000). ArticleCASPubMed Google Scholar
Altavilla, D. et al. Inhibition of lipid peroxidation restores impaired vascular endothelial growth factor expression and stimulates wound healing and angiogenesis in the genetically diabetic mouse. Diabetes50, 667–674 (2001). ArticleCASPubMed Google Scholar
Jain, R.K. Angiogenesis and lymphangiogenesis in tumors: insights from intravital microscopy. Cold Spring Harbor Symposium on Quantitative Biology67, 239–248 (2002). Google Scholar
Jain, R.K., Munn, L.L. & Fukumura, D. Dissecting tumour pathophysiology using intravital microscopy. Nat. Rev. Cancer2, 266–276 (2002). ArticleCASPubMed Google Scholar
Helmlinger, G., Yuan, F., Dellian, M. & Jain, R.K. Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat. Med.3, 177–182 (1997). ArticleCASPubMed Google Scholar
Baish, J.W. & Jain, R.K. Fractals and cancer. Cancer Res.60, 3683–3688 (2000). CASPubMed Google Scholar
Helmlinger, G., Netti, P.A., Lichtenbeld, H.C., Melder, R.J. & Jain, R.K. Solid stress inhibits the growth of multicellular tumor spheroids. Nat. Biotechnol.15, 778–783 (1997). ArticleCASPubMed Google Scholar
Chang, Y.S. et al. Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. Proc. Natl. Acad. Sci. USA97, 14608–14613 (2000). ArticleCASPubMedPubMed Central Google Scholar
Melder, R.J. et al. During angiogenesis, vascular endothelial growth factor and basic fibroblast growth factor regulate natural killer cell adhesion to tumor endothelium. Nat. Med.2, 992–997 (1996). ArticleCASPubMed Google Scholar
Morikawa, S. et al. Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am. J. Pathol.160, 985–1000 (2002). ArticlePubMedPubMed Central Google Scholar
Brown, E.B. et al. In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat. Med.7, 864–868 (2001). ArticleCASPubMed Google Scholar
Fukumura, D. et al. Tumor induction of VEGF promoter activity in stromal cells. Cell94, 715–725 (1998). ArticleCASPubMed Google Scholar
Hobbs, S.K. et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc. Natl. Acad. Sci. USA95, 4607–4612 (1998). ArticleCASPubMedPubMed Central Google Scholar
Hashizume, H. et al. Openings between defective endothelial cells explain tumor vessel leakiness. Am. J. Pathol.156, 1363–1380 (2000). ArticleCASPubMedPubMed Central Google Scholar
Ramanujan, S., Koenig, G.C., Padera, T.P., Stoll, B.R. & Jain, R.K. Local imbalance of proangiogenic and antiangiogenic factors: a potential mechanism of focal necrosis and dormancy in tumors. Cancer Res.60, 1442–1448 (2000). CASPubMed Google Scholar
Jain, R.K. & Fenton, B.T. Intratumoral lymphatic vessels: a case of mistaken identity or malfunction? J. Natl. Cancer Inst.94, 417–421 (2002). ArticlePubMed Google Scholar
Padera, T.P. et al. Lymphatic metastasis in the absence of functional intratumor lymphatics. Science296, 1883–1886 (2002). ArticleCASPubMed Google Scholar
Jain, R.K. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat. Med.7, 987–989 (2001). ArticleCASPubMed Google Scholar
Jain, R.K. et al. Endothelial cell death, angiogenesis, and microvascular function after castration in an androgen-dependent tumor: role of vascular endothelial growth factor. Proc. Natl. Acad. Sci. USA95, 10820–10825 (1998). ArticleCASPubMedPubMed Central Google Scholar
Izumi, Y., Xu, L., di Tomaso, E., Fukumura, D. & Jain, R.K. Tumour biology: herceptin acts as an anti-angiogenic cocktail. Nature416, 279–280 (2002). ArticleCASPubMed Google Scholar
Kadambi, A. et al. Vascular endothelial growth factor (VEGF)-C differentially affects tumor vascular function and leukocyte recruitment: role of VEGF-receptor 2 and host VEGF-A. Cancer Res.61, 2404–2408 (2001). CASPubMed Google Scholar
Benjamin, L.E., Golijanin, D., Itin, A., Pode, D. & Keshet, E. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J. Clin. Invest.103, 159–165 (1999). ArticleCASPubMedPubMed Central Google Scholar
Bergers, G., Song, S., Meyer-Morse, N., Bergsland, E. & Hanahan, D. Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J. Clin. Invest.111, 1287–1295 (2003). ArticleCASPubMedPubMed Central Google Scholar
Baumgartner, I. et al. Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia. Circulation97, 1114–1123 (1998). ArticleCASPubMed Google Scholar
Dellian, M., Witwer, B.P., Salehi, H.A., Yuan, F. & Jain, R.K. Quantitation and physiological characterization of angiogenic vessels in mice: effect of basic fibroblast growth factor, vascular endothelial growth factor/vascular permeability factor, and host microenvironment. Am. J. Pathol.149, 59–71 (1996). CASPubMedPubMed Central Google Scholar
Richardson, T.P., Peters, M.C., Ennett, A.B. & Mooney, D.J. Polymeric system for dual growth factor delivery. Nat. Biotechnol.19, 1029–1034 (2001). ArticleCASPubMed Google Scholar
Thurston, G. et al. Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat. Med.6, 460–463 (2000). ArticleCASPubMed Google Scholar
Linden, T. et al. The antimycotic ciclopirox olamine induces HIF-1α stability, VEGF expression, and angiogenesis. FASEB J.17, 761–763 (2003). ArticleCASPubMed Google Scholar
Vincent, K.A. et al. Angiogenesis is induced in a rabbit model of hindlimb ischemia by naked DNA encoding an HIF-1α/VP16 hybrid transcription factor. Circulation102, 2255–2261 (2000). ArticleCASPubMed Google Scholar
Shyu, K.G. et al. Intramyocardial injection of naked DNA encoding HIF-1α/VP16 hybrid to enhance angiogenesis in an acute myocardial infarction model in the rat. Cardiovasc. Res.54, 576–583 (2002). ArticleCASPubMed Google Scholar
Elson, D.A. et al. Induction of hypervascularity without leakage or inflammation in transgenic mice overexpressing hypoxia-inducible factor-1α. Genes Dev.15, 2520–2532 (2001). ArticleCASPubMedPubMed Central Google Scholar
Schechner, J.S. et al. In vivo formation of complex microvessels lined by human endothelial cells in an immunodeficient mouse. Proc. Natl. Acad. Sci. USA97, 9191–9196 (2000). ArticleCASPubMedPubMed Central Google Scholar
Yang, J. et al. Telomerized human microvasculature is functional in vivo. Nat. Biotechnol.19, 219–224 (2001). ArticleCASPubMed Google Scholar
Hirschi, K.K., Rohovsky, S.A., Beck, L.H., Smith, S.R. & D'Amore, P.A. Endothelial cells modulate the proliferation of mural cell precursors via platelet-derived growth factor-BB and heterotypic cell contact. Circ. Res.84, 298–305 (1999). ArticleCASPubMed Google Scholar
Darland, D.C. & D'Amore, P.A. TGF β is required for the formation of capillary-like structures in three-dimensional cocultures of 10T1/2 and endothelial cells. Angiogenesis4, 11–20 (2001). ArticleCASPubMed Google Scholar
Levenberg, S., Golub, J.S., Amit, M., Itskovitz-Eldor, J. & Langer, R. Endothelial cells derived from human embryonic stem cells. Proc. Natl. Acad. Sci. USA99, 4391–4396 (2002). ArticleCASPubMedPubMed Central Google Scholar
Yamashita, J. et al. Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature408, 92–96 (2000). ArticleCASPubMed Google Scholar
Yurugi-Kobayashi, T. et al. Effective contribution of transplanted vascular progenitor cells derived from embryonic stem cells to adult neovascularization in proper differentiation stage. Blood101, 2675–2678 (2003). ArticleCASPubMed Google Scholar
Jiang, Y. et al. Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp. Hematol.30, 896–904 (2002). ArticleCASPubMed Google Scholar
Kocher, A.A. et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat. Med.7, 430–436 (2001). ArticleCASPubMed Google Scholar
Simper, D., Stalboerger, P.G., Panetta, C.J., Wang, S. & Caplice, N.M. Smooth muscle progenitor cells in human blood. Circulation106, 1199–1204 (2002). ArticleCASPubMed Google Scholar
Majka, S.M. et al. Distinct progenitor populations in skeletal muscle are bone marrow derived and exhibit different cell fates during vascular regeneration. J. Clin. Invest.111, 71–79 (2003). ArticleCASPubMedPubMed Central Google Scholar
Luttun, A. et al. Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat. Med.8, 831–840 (2002). ArticleCASPubMed Google Scholar
Rafii, S. et al. Contribution of marrow-derived progenitors to vascular and cardiac regeneration. Semin. Cell Dev. Biol.13, 61–67 (2002). ArticleCASPubMed Google Scholar
Stoll, B.R., Migliorini, C., Kadambi, A., Munn, L.L. & Jain, R.K. A mathematical model of the contribution of endothelial progenitor cells to angiogenesis in solid tumors: implications for anti-angiogenic therapy. Blood (in the press).
Schmid-Schoenbein, G. The second valve system in lymphatics. Lymphatic Res. Biol.1, 25–29 (2003). Article Google Scholar
Hungerford, J.E. & Little, C.D. Developmental biology of the vascular smooth muscle cell: building a multilayered vessel wall. J. Vasc. Res.36, 2–27 (1999). ArticleCASPubMed Google Scholar
Sartore, S. et al. Contribution of adventitial fibroblasts to neointima formation and vascular remodeling: from innocent bystander to active participant. Circ. Res.89, 1111–1121 (2001). ArticleCASPubMed Google Scholar
Elenbaas, B. & Weinberg, R.A. Heterotypic signaling between epithelial tumor cells and fibroblasts in carcinoma formation. Exp. Cell Res.264, 169–184 (2001). ArticleCASPubMed Google Scholar
Powell, D.W. et al. Myofibroblasts. I. Paracrine cells important in health and disease. Am. J. Physiol.277, C1–C9 (1999). ArticleCASPubMed Google Scholar
McDonald, D.M. & Choyke, P.L. Imaging of angiogenesis: from microscope to clinic. Nat. Med.9, 713–725 (2003). ArticleCASPubMed Google Scholar
Gazit, Y. et al. Fractal characteristics of tumor vascular architecture during tumor growth and regression. Microcirculation4, 395–402 (1997). ArticleCASPubMed Google Scholar