Barre-Sinoussi, F. et al. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science220, 868–871 (1983). CASPubMed Google Scholar
Popovic, M., Read, E. & Gallo, R.C. Detection, isolation and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. Science224, 497–500 (1984). CASPubMed Google Scholar
Levy, J.A., Hoffman, A.D., Kramer, S.M., Landis, J.A. & Shimabukuro, J.M. Isolation of lymphocytopathic retroviruses from San Francisco patients with AIDS. Science225, 840–842 (1984). CASPubMed Google Scholar
Dalgleish, A.G. et al. The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature312, 763–767 (1984). CASPubMed Google Scholar
Klatzmann, D. et al. T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature312, 767–768 (1984). CASPubMed Google Scholar
Feng, Y., Broder, C.C., Kennedy, P.E. & Berger, E.A. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science272, 872–877 (1996). CASPubMed Google Scholar
Choe, H. et al. The β-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell85, 1135–1148 (1996). CASPubMed Google Scholar
Deng, H. et al. Identification of a major co-receptor for primary isolates of HIV-1. Nature381, 661–666 (1996). CASPubMed Google Scholar
Alkhatib, G. et al. CC CKR5: a RANTES, MIP-1α, MIP-1β receptor as a fusion cofactor for macrophage-tropic HIV-1. Science272, 1955–1958 (1996). CASPubMed Google Scholar
Dragic, T. et al. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature381, 667–673 (1996). CASPubMed Google Scholar
Perelson, A.S. Modelling viral and immune system dynamics. Nat. Rev. Immunol.2, 28–36 (2002). CASPubMed Google Scholar
Wei, X. et al. Viral dynamics in human immunodeficiency virus type 1 infection. Nature373, 117–122 (1995). CASPubMed Google Scholar
Ho, D.D. et al. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature373, 123–126 (1995). CASPubMed Google Scholar
Schnittman, S.M. et al. The reservoir for HIV-1 in human peripheral blood is a T cell that maintains expression of CD4. Science245, 305–308 (1989). CASPubMed Google Scholar
Adams, M. et al. Cellular latency in human immunodeficiency virus-infected individuals with high CD4 levels can be detected by the presence of promoter-proximal transcripts. Proc. Natl. Acad. Sci. USA91, 3862–3866 (1994). CASPubMedPubMed Central Google Scholar
Seshamma, T., Bagasra, O., Trono, D., Baltimore, D. & Pomerantz, R. Blocked early-stage latency in the peripheral blood cells of certain individuals infected with human immunodeficiency virus type 1. Proc. Natl. Acad. Sci. USA89, 10663–10667 (1992). CASPubMedPubMed Central Google Scholar
Chun, T.W. et al. Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature387, 183–188 (1997). CASPubMed Google Scholar
Finzi, D. et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science278, 1295–1300 (1997). CASPubMed Google Scholar
Wong, J.K. et al. Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science278, 1291–1227 (1997). CASPubMed Google Scholar
Zack, J.A. et al. HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure. Cell61, 213–222 (1990). CASPubMed Google Scholar
Stevenson, M., Stanwick, T.L., Dempsey, M.P. & Lamonica, C.A. HIV-1 replication is controlled at the level of T cell activation and proviral integration. EMBO J.9, 1551–1560 (1990). CASPubMedPubMed Central Google Scholar
Zhang, Z. et al. Sexual transmission and propagation of SIV and HIV in resting and activated CD4+ T cells. Science286, 1353–1357 (1999). CASPubMed Google Scholar
Unutmaz, D., Kewal-Ramani, V.N., Marmon, S. & Littman, D.R. Cytokine signals are sufficient for HIV-1 infection of resting human T lymphocytes. J. Exp. Med.189, 1735–1746 (1999). CASPubMedPubMed Central Google Scholar
Eckstein, D.A. et al. HIV-1 actively replicates in naive CD4+ T cells residing within human lymphoid tissues. Immunity15, 671–82 (2001). CASPubMed Google Scholar
Spina, C.A., Kwoh, T.J., Chowers, M.Y., Guatelli, J.C. & Richman, D.D. The importance of nef in the induction of human immunodeficiency virus type 1 replication from primary quiescent CD4 lymphocytes. J. Exp. Med.179, 115–123 (1994). CASPubMed Google Scholar
Miller, M.D., Warmerdam, M.T., Gaston, I., Greene, W.C. & Feinberg, M.B. The human immunodeficiency virus-1 nef gene product: a positive factor for viral infection and replication in primary lymphocytes and macrophages. J. Exp. Med.179, 101–13 (1994). CASPubMed Google Scholar
Swingler, S. et al. HIV-1 Nef intersects the CD40L signaling pathway in macrophages to promote resting cell infection. Nature (in the press).
Wu, Y. & Marsh, J.W. Selective transcription and modulation of resting T cell activity by preintegrated HIV DNA. Science293, 1503–1506 (2001). CASPubMed Google Scholar
Schroder, A.R. et al. HIV-1 integration in the human genome favors active genes and local hotspots. Cell110, 521–529 (2002). CASPubMed Google Scholar
Jordan, A., Defechereux, P. & Verdin, E. The site of HIV-1 integration in the human genome determines basal transcriptional activity and response to Tat transactivation. EMBO J.20, 1726–38 (2001). CASPubMedPubMed Central Google Scholar
Gartner, S. et al. The role of mononuclear phagocytes in HTLV-III/LAV infection. Science233, 215–219 (1986). CASPubMed Google Scholar
Koenig, S. et al. Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy. Science233, 1089–1093 (1986). CASPubMed Google Scholar
Wiley, C.A., Schrier, R.D., Nelson, J.A., Lampert, P.W. & Oldstone, M.B.A. Cellular localization of human immunodeficiency virus infection within the brains of acquired immune deficiency syndrome patients. Proc. Natl. Acad. Sci. USA83, 7089–7093 (1986). CASPubMedPubMed Central Google Scholar
Weinberg, J.B., Matthews, T.J., Cullen, B.R. & Malim, M.H. Productive human immunodeficiency virus type 1 (HIV-1) infection of nonproliferating human monocytes. J. Exp. Med.174, 1477–1482 (1991). CASPubMed Google Scholar
Bukrinsky, M.I. et al. Active nuclear import of human immunodeficiency virus type 1 preintegration complexes. Proc. Natl. Acad. Sci. USA89, 6580–6584 (1992). CASPubMedPubMed Central Google Scholar
Lewis, P., Hensel, M. & Emerman, M. Human immunodeficiency virus infection of cells arrested in the cell cycle. EMBO J.11, 3053–3058 (1992). CASPubMedPubMed Central Google Scholar
Dean, M. et al. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Science273, 1856–1862 (1996). CASPubMed Google Scholar
Liu, R. et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell86, 367–377 (1996). CASPubMed Google Scholar
Samson, M. et al. Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature382, 722–725 (1996). CASPubMed Google Scholar
Veazey, R.S. et al. Gastrointestinal tract as a major site of CD4+ T cell depletion and viral replication in SIV infection. Science280, 427–431 (1998). CASPubMed Google Scholar
Igarashi, T. et al. Macrophage are the principal reservoir and sustain high virus loads in rhesus macaques after the depletion of CD4+ T cells by a highly pathogenic simian immunodeficiency virus/HIV type 1 chimera (SHIV): Implications for HIV-1 infections of humans. Proc. Natl. Acad. Sci. USA98, 658–663 (2001). CASPubMedPubMed Central Google Scholar
Eckstein, D.A. et al. HIV-1 Vpr enhances viral burden by facilitating infection of tissue macrophages but not nondividing CD4+ T cells. J. Exp. Med.194, 1407–1419 (2001). CASPubMedPubMed Central Google Scholar
Embretson, J. et al. Massive covert infection of helper T lymphocytes and macrophages by HIV during the incubation period of AIDS. Nature362, 359–362 (1993). CASPubMed Google Scholar
Orenstein, J.M., Meltzer, M.S., Phipps, T. & Gendelman, H.E. Cytoplasmic Assembly and accumulation of human immunodeficiency virus types 1 and 2 in recombinant human colony-stimulating factor-1-treated human monocytes: An ultrastructural study. J. Virol.62, 2578–2586 (1988). CASPubMedPubMed Central Google Scholar
Raposo, G. et al. Human macrophages accumulate HIV-1 particles in MHC II compartments. Traffic3, 718–729 (2002). CASPubMed Google Scholar
Muller, H., Falk, S. & Stutte, H.J. Accessory cells as primary target of human immunodeficiency virus HIV infection. J. Clin. Pathol.39, 1161 (1986). CASPubMedPubMed Central Google Scholar
Le Tourneau, A. et al. Viral type particles in the germinal centers during a lymphadenopathic syndrome related to AIDS. Ann. Pathol.5, 137–142 (1985). CASPubMed Google Scholar
Tenner-Racz, K. et al. HTLV-III/LAV viral antigens in lymph nodes of homosexual men with persistent generalized lymphadenopathy and AIDS. Am. J. Pathol.123, 9–15 (1986). CASPubMedPubMed Central Google Scholar
Tschachler, E. et al. Epidermal Langerhans cells—a target for HTLV-III/LAV infection. J. Invest. Dermatol.88, 233–237 (1987). CASPubMed Google Scholar
Patterson, S. & Knight, S.C. Susceptibility of human peripheral blood dendritic cells to infection by human immunodeficiency virus. J. Gen. Virol.68, 1177–1181 (1987). PubMed Google Scholar
Spiegel, H., Herbst, H., Niedobitek, G., Foss, H.D. & Stein, H. Follicular dendritic cells are a major reservoir for human immunodeficiency virus type 1 in lymphoid tissues facilitating infection of CD4+ T-helper cells. Am. J. Pathol.140, 15–22 (1992). CASPubMedPubMed Central Google Scholar
Pantaleo, G. et al. HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. Nature362, 355–358 (1993). CASPubMed Google Scholar
Cameron, P.U. et al. Dendritic cells exposed to human immunodeficiency virus type-1 transmit a vigorous cytopathic infection to CD4+ T cells. Science257, 383–387 (1992). CASPubMed Google Scholar
Pope, M. et al. Conjugates of dendritic cells and memory T lymphocytes from skin facilitate productive infection with HIV-1. Cell78, 389–398 (1994). CASPubMed Google Scholar
Geijtenbeek, T.B. et al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell100, 587–597 (2000). CASPubMed Google Scholar
Turville, S.G. et al. Diversity of receptors binding HIV on dendritic cell subsets. Nat. Immunol.3, 975–983 (2002). CASPubMed Google Scholar
Kwon, D.S., Gregorio, G., Bitton, N., Hendrickson, W.A. & Littman, D.R. DC-SIGN-mediated internalization of HIV is required for trans-enhancement of T cell infection. Immunity16, 135–144 (2002). CASPubMed Google Scholar
Smith, B.A. et al. Persistence of infectious HIV on follicular dendritic cells. J. Immunol.166, 690–696 (2001). CASPubMed Google Scholar
Moore, J. & Stevenson, M. New targets for inhibitors of HIV-1 replication. Nat. Rev. Mol. Cell Biol.1, 40–49 (2000). CASPubMed Google Scholar
Ratner, L. et al. Complete nucleotide sequence of the AIDS virus, HTLV-III. Nature313, 277–284 (1985). CASPubMed Google Scholar
Wain-Hobson, S., Sonigo, P., Danos, O., Cole, S. & Alizon, M. Nucleotide sequence of the AIDS virus, LAV. Cell40, 9–17 (1985). CASPubMed Google Scholar
Sanchez-Pescador, R. et al. Nucleotide sequence and expression of an AIDS-associated retrovirus (ARV-2). Science227, 484–492 (1985). CASPubMed Google Scholar
Wong-Staal, F. et al. Genomic diversity of human T-lymphotropic virus type III (HTLV-III). Science229, 759–762 (1985). CASPubMed Google Scholar
Arya, S.K., Guo, C., Josephs, S.F. & Wong-Staal, F. _Trans_-activator gene of human T-lymphotropic virus type III (HTLV-III). Science229, 69–73 (1985). CASPubMed Google Scholar
Sodroski, J., Patarca, R. & Rosen, C. Location of the _trans_-activating region of the genome of human T cell lymphotropic virus type III. Science229, 74–77 (1985). CASPubMed Google Scholar
Wright, C.M., Felder, B.K., Paskalis, H. & Pavlakis, G.N. Expression and characterization of the _trans_-activator of HTLV-III/LAV virus. Science234, 988–992 (1986). CASPubMed Google Scholar
Sodroski, J. et al. A second post-transcriptional _trans_-activator gene required for HTLV-III replication. Nature321, 412–417 (1986). CASPubMed Google Scholar
Cullen, B.R. _Trans_-activation of human immunodeficiency virus occurs via a bimodal mechanism. Cell46, 973–982 (1986). CASPubMed Google Scholar
Cohen, E.A., Terwilliger, E.F., Sodroski, J.G. & Haseltine, W.A. Identification of a protein encoded by the vpu gene of HIV-1. Nature334, 532–534 (1988). CASPubMed Google Scholar
Strebel, K., Klimkait, T. & Martin, M.A. A novel gene of HIV-1, vpu, and its 16-kilodalton product. Science241, 1221–1223 (1988). CASPubMed Google Scholar
Arya, S.K. & Gallo, R.C. Three novel genes of human T-lymphotropic virus type III: immune reactivity of their products with sera from acquired immune deficiency syndrome patients. Proc. Natl. Acad. Sci. USA83, 2209–2213 (1986). CASPubMedPubMed Central Google Scholar
Strebel, K. et al. The HIV 'A' (sor) gene product is essential for virus infectivity. Nature328, 728–730 (1987). CASPubMed Google Scholar
Fisher, A.G. et al. The sor gene of HIV-1 is required for efficient virus transmission in vitro. Science237, 888–893 (1987). CASPubMed Google Scholar
Kestler, H.W. et al. Importance of the nef gene for maintenance of high virus loads and for development of AIDS. Cell65, 651–662 (1991). CASPubMed Google Scholar
Cocchi, F. et al. Identification of RANTES, MIP-1α, and MIP-1β as the major HIV-suppressive factors produced by CD8+ T Cells. Science270, 1811–1815 (1995). CASPubMed Google Scholar
Kinoshita, S., Chen, B.K., Kaneshima, H. & Nolan, G.P. Host control of HIV-1 parasitism in T cells by the nuclear factor of activated T cells. Cell95, 595–604 (1998). CASPubMed Google Scholar
Kalpana, G.V., Marmon, S., Wang, W., Crabtree, G.R. & Goff, S.P. Binding and stimulation of HIV-1 integrase by a human homolog of yeast transcription factor SNF5. Science266, 2002–2006 (1994). CASPubMed Google Scholar
Farnet, C.M. & Bushman, F.D. HIV-1 cDNA integration: requirement of HMG I(Y) protein for function of preintegration complexes in vitro. Cell88, 483–492 (1997). CASPubMed Google Scholar
Chen, H. & Engelman, A. The barrier-to-autointegration protein is a host factor for HIV type 1 integration. Proc. Natl. Acad. Sci. USA95, 15270–15274 (1998). CASPubMedPubMed Central Google Scholar
Wei, P., Garber, M.E., Fang, S.M., Fischer, W.H. & Jones, K.A. A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell92, 451–462 (1998). CASPubMed Google Scholar
Fornerod, M., Ohno, M., Yoshida, M. & Mattaj, I.W. CRM1 is an export receptor for leucine-rich nuclear export signals. Cell90, 1051–1060 (1997). CASPubMed Google Scholar
Fukuda, M. et al. CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature390, 308–311 (1997). CASPubMed Google Scholar
Neville, M., Stutz, F., Lee, L., Davis, L.I. & Rosbash, M. The importin-β family member Crm1p bridges the interaction between Rev and the nuclear pore complex during nuclear export. Curr. Biol.7, 767–775 (1997). CASPubMed Google Scholar
Franke, E.K., Yuan, H.E.H. & Luban, J. Specific incorporation of cyclophilin A into HIV-1 virions. Nature372, 359–362 (1994). CASPubMed Google Scholar
Thali, M. et al. Functional association of cyclophilin A with HIV-1 virions. Nature372, 363–365 (1994). CASPubMed Google Scholar
Zimmerman, C. et al. Identification of a host protein essential for assembly of immature HIV-1 capsids. Nature415, 88–92 (2002). CASPubMed Google Scholar
Garrus, J.E. et al. Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell107, 55–65 (2001). CASPubMed Google Scholar
VerPlank, L. et al. Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55(Gag). Proc. Natl. Acad. Sci. USA98, 7724–7729 (2001). CASPubMedPubMed Central Google Scholar
Madani, N. & Kabat, D. An endogenous inhibitor of human immunodeficiency virus in human lymphocytes is overcome by the viral Vif protein. J. Virol.72, 10251–10255 (1998). CASPubMedPubMed Central Google Scholar
Simon, J.H.M., Gaddis, N.C., Fouchier, R.A.M. & Malim, M.H. Evidence for a newly discovered cellular anti-HIV-1 phenotype. Nat. Med.4, 1397–1400 (1998). CASPubMed Google Scholar
Sheehy, A.M., Gaddis, N.C., Choi, J.D. & Malim, M.H. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature418, 646–650 (2002). CASPubMed Google Scholar
Munk, C., Brandt, S.M., Lucero, G. & Landau, N.R. A dominant block to HIV-1 replication at reverse transcription in simian cells. Proc. Natl. Acad. Sci. USA99, 13843–13848 (2002). CASPubMedPubMed Central Google Scholar
Hatziioannou, T., Cowan, S., Goff, S.P., Bieniasz, P.D. & Towers, G.J. Restriction of multiple divergent retroviruses by Lv1 and Ref1. EMBO J.22, 385–394 (2003). CASPubMedPubMed Central Google Scholar
Cullen, B.R. RNA interference: antiviral defense and genetic tool. Nat. Immunol.3, 597–599 (2002). CASPubMed Google Scholar
Piatak, M. Jr. et al. High levels of HIV-1 in plasma during all stages of infection determined by competitive PCR. Science259, 1749–1754 (1993). CASPubMed Google Scholar
Mellors, J.W. et al. Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science272, 1167–1170 (1996). CASPubMed Google Scholar
Deacon, N.J. et al. Genomic structure of an attenuated quasi species of HIV-1 from a blood transfusion donor and recipients. Science270, 988–991 (1995). CASPubMed Google Scholar
Kirchhoff, F., Greenough, T.C., Brettler, D.B., Sullivan, J.L. & Desrosiers, R.C. Brief report: absence of intact nef sequences in a long-term survivor with nonprogressive HIV-1 infection. N. Engl. J. Med.332, 228–232 (1995). CASPubMed Google Scholar
Huang, Y. et al. The role of a mutant CCR5 allele in HIV-1 transmission and disease progression. Nat. Med.2, 1240–3 (1996). CASPubMed Google Scholar
Lifson, J.D. et al. Induction of CD4-dependent cell fusion by the HTLV-III/LAV envelope glycoprotein. Nature323, 725–728 (1986). CASPubMed Google Scholar
Sodroski, J., Goh, W.C., Rosen, C., Campbell, K. & Haseltine, W.A. Role of the HTLV-III/LAV envelope in syncytium formation and cytopathicity. Nature322, 470–474 (1986). CASPubMed Google Scholar
LaBonte, J.A., Patel, T., Hofmann, W. & Sodroski, J. Importance of membrane fusion mediated by human immunodeficiency virus envelope glycoproteins for lysis of primary CD4-positive T cells. J. Virol.74, 10690–10698 (2000). CASPubMedPubMed Central Google Scholar
Etemad-Moghadam, B. et al. Membrane-fusing capacity of the human immunodeficiency virus envelope proteins determines the efficiency of CD4+ T cell depletion in macaques infected by a simian-human immunodeficiency virus. J. Virol.75, 5646–5655 (2001). CASPubMedPubMed Central Google Scholar
Stewart, S.A., Poon, B., Jowett, J.B.M. & Chen, I.S.Y. Human immunodeficiency virus type 1 Vpr induces apoptosis following cell cycle arrest. J. Virol.71, 5579–5592 (1997). CASPubMedPubMed Central Google Scholar
Somasundaran, M. et al. Evidence for a cytopathogenicity determinant in HIV-1 Vpr. Proc. Natl. Acad. Sci. USA99, 9503–9508 (2002). CASPubMedPubMed Central Google Scholar
Asjo, B. et al. Replicative capacity of human immunodeficiency virus from patients with varying severity of HIV infection. Lancet2, 660–662 (1986). CASPubMed Google Scholar
Cheng-Mayer, C., Seto, D., Tateno, M. & Levy, J.A. Biologic features of HIV-1 that correlate with virulence in the host. Science240, 80–82 (1988). CASPubMed Google Scholar
Tersmette, M. et al. Differential syncytium-inducing capacity of human immunodeficiency virus isolates: frequent detection of syncytium-inducing isolates in patients with acquired immunodeficiency syndrome (AIDS) and AIDS-related complex. J. Virol.62, 2026–2032 (1988). CASPubMedPubMed Central Google Scholar
Connor, R.I., Sheridan, K.E., Ceradini, D., Choe, S. & Landau, N.R. Change in coreceptor use coreceptor use correlates with disease progression in HIV-1–infected individuals. J. Exp. Med.185, 621–628 (1997). CASPubMedPubMed Central Google Scholar
Meyaard, L. et al. Programmed death of T cells in HIV-1 infection. Science257, 217–219 (1992). CASPubMed Google Scholar
Finkel, T.H. et al. Apoptosis occurs predominantly in bystander cells and not in productively infected cells of HIV- and SIV-infected lymph nodes. Nat. Med.1, 129–134 (1995). CASPubMed Google Scholar
Geleziunas, R., Xu, W., Takeda, K., Ichijo, H. & Greene, W.C. HIV-1 Nef inhibits ASK1-dependent death signalling providing a potential mechanism for protecting the infected host cell. Nature410, 834–838 (2001). CASPubMed Google Scholar
Wolthers, K.C. et al. T cell telomere length in HIV-1 infection: no evidence for increased CD4+ T cell turnover. Science274, 1543–1546 (1996). CASPubMed Google Scholar
Hellerstein, M. et al. Directly measured kinetics of circulating T lymphocytes in normal and HIV-1-infected humans. Nat. Med.5, 83–89 (1999). CASPubMed Google Scholar
Kovacs, J.A. et al. Identification of dynamically distinct subpopulations of T lymphocytes that are differentially affected by HIV. J. Exp. Med.194, 1731–1741 (2001). CASPubMedPubMed Central Google Scholar
Grossman, Z., Meier-Schellersheim, M., Sousa, A.E., Victorino, R.M. & Paul, W.E. CD4+ T cell depletion in HIV infection: are we closer to understanding the cause? Nat. Med.8, 319–323 (2002). CASPubMed Google Scholar
Douek, D.C. et al. Changes in thymic function with age and during the treatment of HIV infection. Nature396, 690–695 (1998). CASPubMed Google Scholar
Letvin, N.L. et al. Induction of AIDS-like disease in macaque monkeys with T cell tropic retrovirus STLV-III. Science230, 71–73 (1985). CASPubMed Google Scholar
Rey-Cuille, M.A. et al. Simian immunodeficiency virus replicates to high levels in sooty mangabeys without inducing disease. J. Virol.72, 3872–3886 (1998). CASPubMedPubMed Central Google Scholar
Silvestri, G. et al. Nonpathogenic SIV infection of sooty mangabeys is characterized by limited bystander immunopathology despite chronic high-level viremia. Immunity18, 441–452 (2003). CASPubMed Google Scholar