- Graybiel, A.M. The basal ganglia and chunking of action repertoires. Neurobiol. Learn. Mem. 70, 119–136 (1998).
Article CAS PubMed Google Scholar
- Schultz, W. Predictive reward signal of dopamine neurons. J. Neurophysiol. 80, 1–27 (1998).
Article CAS PubMed Google Scholar
- Morris, G., Arkadir, D., Nevet, A., Vaadia, E. & Bergman, H. Coincident but distinct messages of midbrain dopamine and striatal tonically active neurons. Neuron 43, 133–143 (2004).
Article CAS PubMed Google Scholar
- Joshua, M., Adler, A., Mitelman, R., Vaadia, E. & Bergman, H. Midbrain dopaminergic neurons and striatal cholinergic interneurons encode the difference between reward and aversive events at different epochs of probabilistic classical conditioning trials. J. Neurosci. 28, 11673–11684 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Hyland, B.I., Reynolds, J.N., Hay, J., Perk, C.G. & Miller, R. Firing modes of midbrain dopamine cells in the freely moving rat. Neuroscience 114, 475–492 (2002).
Article CAS PubMed Google Scholar
- Kimura, M., Rajkowski, J. & Evarts, E. Tonically discharging putamen neurons exhibit set-dependent responses. Proc. Natl. Acad. Sci. USA 81, 4998–5001 (1984).
Article CAS PubMed PubMed Central Google Scholar
- Apicella, P. Leading tonically active neurons of the striatum from reward detection to context recognition. Trends Neurosci. 30, 299–306 (2007).
Article CAS PubMed Google Scholar
- Aosaki, T. et al. Responses of tonically active neurons in the primate's striatum undergo systematic changes during behavioral sensorimotor conditioning. J. Neurosci. 14, 3969–3984 (1994).
Article CAS PubMed PubMed Central Google Scholar
- Aosaki, T., Kimura, M. & Graybiel, A.M. Temporal and spatial characteristics of tonically active neurons of the primate's striatum. J. Neurophysiol. 73, 1234–1252 (1995).
Article CAS PubMed Google Scholar
- Tecuapetla, F., Koos, T., Tepper, J.M., Kabbani, N. & Yeckel, M.F. Differential dopaminergic modulation of neostriatal synaptic connections of striatopallidal axon collaterals. J. Neurosci. 29, 8977–8990 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Pearce, R.A. Physiological evidence for two distinct GABAA responses in rat hippocampus. Neuron 10, 189–200 (1993).
Article CAS PubMed Google Scholar
- Banks, M.I., Li, T.B. & Pearce, R.A. The synaptic basis of GABAA,slow . J. Neurosci. 18, 1305–1317 (1998).
Article CAS PubMed PubMed Central Google Scholar
- Tamás, G., Lorincz, A., Simon, A. & Szabadics, J. Identified sources and targets of slow inhibition in the neocortex. Science 299, 1902–1905 (2003).
Article PubMed Google Scholar
- Karayannis, T. et al. Slow GABA transient and receptor desensitization shape synaptic responses evoked by hippocampal neurogliaform cells. J. Neurosci. 30, 9898–9909 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Szabadics, J., Tamas, G. & Soltesz, I. Different transmitter transients underlie presynaptic cell type specificity of GABAA,slow and GABAA,fast . Proc. Natl. Acad. Sci. USA 104, 14831–14836 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Banks, M.I., White, J.A. & Pearce, R.A. Interactions between distinct GABAA circuits in hippocampus. Neuron 25, 449–457 (2000).
Article CAS PubMed Google Scholar
- Overstreet, L.S., Jones, M.V. & Westbrook, G.L. Slow desensitization regulates the availability of synaptic GABAA receptors. J. Neurosci. 20, 7914–7921 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Ibáñez-Sandoval, O. et al. A novel functionally distinct subtype of striatal neuropeptide Y interneuron. J. Neurosci. 31, 16757–16769 (2011).
Article PubMed PubMed Central Google Scholar
- Gittis, A.H., Nelson, A.B., Thwin, M.T., Palop, J.J. & Kreitzer, A.C. Distinct roles of GABAergic interneurons in the regulation of striatal output pathways. J. Neurosci. 30, 2223–2234 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Capogna, M. & Pearce, R.A. GABAA,slow: causes and consequences. Trends Neurosci. 34, 101–112 (2011).
Article CAS PubMed Google Scholar
- Hill, J.A. Jr., Zoli, M., Bourgeois, J.P. & Changeux, J.P. Immunocytochemical localization of a neuronal nicotinic receptor: the beta 2-subunit. J. Neurosci. 13, 1551–1568 (1993).
Article CAS PubMed PubMed Central Google Scholar
- Koós, T. & Tepper, J.M. Inhibitory control of neostriatal projection neurons by GABAergic interneurons. Nat. Neurosci. 2, 467–472 (1999).
Article PubMed Google Scholar
- Koós, T. & Tepper, J.M. Dual cholinergic control of fast-spiking interneurons in the neostriatum. J. Neurosci. 22, 529–535 (2002).
Article PubMed PubMed Central Google Scholar
- Chang, H.T. & Kita, H. Interneurons in the rat striatum: relationships between parvalbumin neurons and cholinergic neurons. Brain Res. 574, 307–311 (1992).
Article CAS PubMed Google Scholar
- Sullivan, M.A., Chen, H. & Morikawa, H. Recurrent inhibitory network among striatal cholinergic interneurons. J. Neurosci. 28, 8682–8690 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Ding, J.B., Guzman, J.N., Peterson, J.D., Goldberg, J.A. & Surmeier, D.J. Thalamic gating of corticostriatal signaling by cholinergic interneurons. Neuron 67, 294–307 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Giniatullin, R., Nistri, A. & Yakel, J.L. Desensitization of nicotinic ACh receptors: shaping cholinergic signaling. Trends Neurosci. 28, 371–378 (2005).
Article CAS PubMed Google Scholar
- Wilson, C.J. The mechanism of intrinsic amplification of hyperpolarizations and spontaneous bursting in striatal cholinergic interneurons. Neuron 45, 575–585 (2005).
Article CAS PubMed Google Scholar
- Gradinaru, V. et al. Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141, 154–165 (2010).
CAS PubMed PubMed Central Google Scholar
- Apicella, P., Ravel, S., Sardo, P. & Legallet, E. Influence of predictive information on responses of tonically active neurons in the monkey striatum. J. Neurophysiol. 80, 3341–3344 (1998).
Article CAS PubMed Google Scholar
- Gradinaru, V., Thompson, K.R. & Deisseroth, K. eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol. 36, 129–139 (2008).
Article PubMed PubMed Central Google Scholar
- Witten, I.B. et al. Cholinergic interneurons control local circuit activity and cocaine conditioning. Science 330, 1677–1681 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Oláh, S. et al. Regulation of cortical microcircuits by unitary GABA-mediated volume transmission. Nature 461, 1278–1281 (2009).
Article PubMed PubMed Central Google Scholar
- Banks, M.I. & Pearce, R.A. Kinetic differences between synaptic and extrasynaptic GABA(A) receptors in CA1 pyramidal cells. J. Neurosci. 20, 937–948 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Wonnacott, S. Presynaptic nicotinic ACh receptors. Trends Neurosci. 20, 92–98 (1997).
Article CAS PubMed Google Scholar
- McGehee, D.S., Heath, M.J., Gelber, S., Devay, P. & Role, L.W. Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science 269, 1692–1696 (1995).
Article CAS PubMed Google Scholar
- De Rover, M., Lodder, J.C., Schoffelmeer, A.N. & Brussaard, A.B. Intermittent morphine treatment induces a long-lasting increase in cholinergic modulation of GABAergic synapses in nucleus accumbens of adult rats. Synapse 55, 17–25 (2005).
Article CAS PubMed Google Scholar
- Kubota, Y., Mikawa, S. & Kawaguchi, Y. Neostriatal GABAergic interneurones contain NOS, calretinin or parvalbumin. Neuroreport 5, 205–208 (1993).
Article CAS PubMed Google Scholar
- Ibáñez-Sandoval, O. et al. Electrophysiological and morphological characteristics and synaptic connectivity of tyrosine hydroxylase–expressing neurons in adult mouse striatum. J. Neurosci. 30, 6999–7016 (2010).
Article PubMed PubMed Central Google Scholar
- Berke, J.D. Fast oscillations in cortical-striatal networks switch frequency following rewarding events and stimulant drugs. Eur. J. Neurosci. 30, 848–859 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Zhou, F.M., Liang, Y. & Dani, J.A. Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum. Nat. Neurosci. 4, 1224–1229 (2001).
Article CAS PubMed Google Scholar
- Rice, M.E. & Cragg, S.J. Nicotine amplifies reward-related dopamine signals in striatum. Nat. Neurosci. 7, 583–584 (2004).
Article CAS PubMed Google Scholar
- Matsumoto, N., Minamimoto, T., Graybiel, A.M. & Kimura, M. Neurons in the thalamic CM-Pf complex supply striatal neurons with information about behaviorally significant sensory events. J. Neurophysiol. 85, 960–976 (2001).
Article CAS PubMed Google Scholar
- Hikosaka, O., Sakamoto, M. & Usui, S. Functional properties of monkey caudate neurons. III. Activities related to expectation of target and reward. J. Neurophysiol. 61, 814–832 (1989).
Article CAS PubMed Google Scholar
- Kataoka, Y. et al. Decreased number of parvalbumin and cholinergic interneurons in the striatum of individuals with Tourette syndrome. J. Comp. Neurol. 518, 277–291 (2010).
Article PubMed PubMed Central Google Scholar
- Leckman, J.F., Vaccarino, F.M., Kalanithi, P.S. & Rothenberger, A. Annotation: Tourette syndrome: a relentless drumbeat driven by misguided brain oscillations. J. Child Psychol. Psychiatry 47, 537–550 (2006).
Article PubMed Google Scholar
- Han, X. et al. Millisecond-timescale optical control of neural dynamics in the nonhuman primate brain. Neuron 62, 191–198 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Yáñez-Muñoz, R.J. et al. Effective gene therapy with nonintegrating lentiviral vectors. Nat. Med. 12, 348–353 (2006).
Article PubMed Google Scholar
- Jog, M.S. et al. Tetrode technology: advances in implantable hardware, neuroimaging, and data analysis techniques. J. Neurosci. Methods 117, 141–152 (2002).
Article CAS PubMed Google Scholar
- Berke, J.D. Uncoordinated firing rate changes of striatal fast-spiking interneurons during behavioral task performance. J. Neurosci. 28, 10075–10080 (2008).
Article CAS PubMed PubMed Central Google Scholar