Oncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglion cells (original) (raw)

References

  1. Ramon y Cajal, S. Degeneration and Regeneration of the Nervous System (Oxford Univ. Press, New York, 1991).
    Book Google Scholar
  2. Aguayo, A.J. et al. Degenerative and regenerative responses of injured neurons in the central nervous system of adult mammals. Philos. Trans. R. Soc. Lond. B Biol. Sci. 331, 337–343 (1991).
    Article CAS PubMed Google Scholar
  3. Chierzi, S., Strettoi, E., Cenni, M.C. & Maffei, L. Optic nerve crush: axonal responses in wild-type and bcl-2 transgenic mice. J. Neurosci. 19, 8367–8376 (1999).
    Article CAS PubMed Central PubMed Google Scholar
  4. Shen, S., Wiemelt, A.P., McMorris, F.A. & Barres, B.A. Retinal ganglion cells lose trophic responsiveness after axotomy. Neuron 23, 285–295 (1999).
    Article CAS PubMed Google Scholar
  5. Monsul, N.T. et al. Intraocular injection of dibutyryl cyclic AMP promotes axon regeneration in rat optic nerve. Exp. Neurol. 186, 124–133 (2004).
    Article CAS PubMed Google Scholar
  6. Kermer, P., Klocker, N., Labes, M. & Bahr, M. Inhibition of CPP32-like proteases rescues axotomized retinal ganglion cells from secondary cell death in vivo. J. Neurosci. 18, 4656–4662 (1998).
    Article CAS PubMed Central PubMed Google Scholar
  7. Mey, J. & Thanos, S. Intravitreal injections of neurotrophic factors support the survival of axotomized retinal ganglion cells in adult rats in vivo. Brain Res. 602, 304–317 (1993).
    Article CAS PubMed Google Scholar
  8. Pernet, V. & Di Polo, A. Synergistic action of brain-derived neurotrophic factor and lens injury promotes retinal ganglion cell survival, but leads to optic nerve dystrophy in vivo. Brain (2006).
  9. Koeberle, P.D. & Ball, A.K. Effects of GDNF on retinal ganglion cell survival following axotomy. Vision Res. 38, 1505–1515 (1998).
    Article CAS PubMed Google Scholar
  10. Cheng, L., Sapieha, P., Kittlerova, P., Hauswirth, W.W. & Di Polo, A. TrkB gene transfer protects retinal ganglion cells from axotomy-induced death in vivo. J. Neurosci. 22, 3977–3986 (2002).
    Article CAS PubMed Central PubMed Google Scholar
  11. Zhou, Y., Pernet, V., Hauswirth, W.W. & Di Polo, A. Activation of the extracellular signal-regulated kinase 1/2 pathway by AAV gene transfer protects retinal ganglion cells in glaucoma. Mol. Ther. 12, 402–412 (2005).
    Article CAS PubMed Google Scholar
  12. Weibel, D., Cadelli, D. & Schwab, M.E. Regeneration of lesioned rat optic nerve fibers is improved after neutralization of myelin-associated neurite growth inhibitors. Brain Res. 642, 259–266 (1994).
    Article CAS PubMed Google Scholar
  13. Fischer, D., He, Z. & Benowitz, L.I. Counteracting the Nogo receptor enhances optic nerve regeneration if retinal ganglion cells are in an active growth state. J. Neurosci. 24, 1646–1651 (2004).
    Article CAS PubMed Central PubMed Google Scholar
  14. Lehmann, M. et al. Inactivation of Rho signaling pathway promotes CNS axon regeneration. J. Neurosci. 19, 7537–7547 (1999).
    Article CAS PubMed Central PubMed Google Scholar
  15. Fischer, D., Petkova, V., Thanos, S. & Benowitz, L.I. Switching mature retinal ganglion cells to a robust growth state in vivo: gene expression and synergy with RhoA inactivation. J. Neurosci. 24, 8726–8740 (2004).
    Article CAS PubMed Central PubMed Google Scholar
  16. Koprivica, V. et al. EGFR activation mediates inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans. Science 310, 106–110 (2005).
    Article CAS PubMed Google Scholar
  17. Berry, M., Carlile, J. & Hunter, A. Peripheral nerve explants grafted into the vitreous body of the eye promote the regeneration of retinal ganglion cell axons severed in the optic nerve. J. Neurocytol. 25, 147–170 (1996).
    Article CAS PubMed Google Scholar
  18. Leon, S., Yin, Y., Nguyen, J., Irwin, N. & Benowitz, L.I. Lens injury stimulates axon regeneration in the mature rat optic nerve. J. Neurosci. 20, 4615–4626 (2000).
    Article CAS PubMed Central PubMed Google Scholar
  19. Fischer, D., Heiduschka, P. & Thanos, S. Lens-injury-stimulated axonal regeneration throughout the optic pathway of adult rats. Exp. Neurol. 172, 257–272 (2001).
    Article CAS PubMed Google Scholar
  20. Lorber, B., Berry, M. & Logan, A. Lens injury stimulates adult mouse retinal ganglion cell axon regeneration via both macrophage- and lens-derived factors. Eur. J. Neurosci. 21, 2029–2034 (2005).
    Article PubMed Google Scholar
  21. Yin, Y. et al. Macrophage-derived factors stimulate optic nerve regeneration. J. Neurosci. 23, 2284–2293 (2003).
    Article CAS PubMed Central PubMed Google Scholar
  22. Li, Y., Irwin, N., Yin, Y., Lanser, M. & Benowitz, L.I. Axon regeneration in goldfish and rat retinal ganglion cells: differential responsiveness to carbohydrates and cAMP. J. Neurosci. 23, 7830–7838 (2003).
    Article CAS PubMed Central PubMed Google Scholar
  23. Lorber, B., Berry, M., Logan, A. & Tonge, D. Effect of lens lesion on neurite outgrowth of retinal ganglion cells in vitro. Mol. Cell. Neurosci. 21, 301–311 (2002).
    Article CAS PubMed Google Scholar
  24. MacManus, J.P., Whitfield, J.F., Boynton, A.L., Durkin, J.P. & Swierenga, S.H. Oncomodulin–a widely distributed, tumour-specific, calcium-binding protein. Oncodev. Biol. Med. 3, 79–90 (1982).
    CAS PubMed Google Scholar
  25. Henzl, M.T., Larson, J.D. & Agah, S. Influence of monovalent cation identity on parvalbumin divalent ion-binding properties. Biochemistry 43, 2747–2763 (2004).
    Article CAS PubMed Google Scholar
  26. Henzl, M.T., Shibasaki, O., Comegys, T.H., Thalmann, I. & Thalmann, R. Oncomodulin is abundant in the organ of Corti. Hear. Res. 106, 105–111 (1997).
    Article CAS PubMed Google Scholar
  27. Meyer-Franke, A., Kaplan, M.R., Pfrieger, F.W. & Barres, B.A. Characterization of the signaling interactions that promote the survival and growth of developing retinal ganglion cells in culture. Neuron 15, 805–819 (1995).
    Article CAS PubMed Google Scholar
  28. Jo, S., Wang, E. & Benowitz, L.I. CNTF is an endogenous axon regeneration factor for mammalian retinal ganglion cells. Neuroscience 89, 579–591 (1999).
    Article CAS PubMed Google Scholar
  29. Mansour-Robaey, S., Clarke, D.B., Wang, Y.C., Bray, G.M. & Aguayo, A.J. Effects of ocular injury and administration of brain-derived neurotrophic factor on survival and regrowth of axotomized retinal ganglion cells. Proc. Natl. Acad. Sci. USA 91, 1632–1636 (1994).
    Article CAS PubMed Central PubMed Google Scholar
  30. Cui, Q., Yip, H.K., Zhao, R.C., So, K.F. & Harvey, A.R. Intraocular elevation of cyclic AMP potentiates ciliary neurotrophic factor-induced regeneration of adult rat retinal ganglion cell axons. Mol. Cell. Neurosci. 22, 49–61 (2003).
    Article CAS PubMed Google Scholar
  31. Barres, B.A., Silverstein, B.E., Corey, D.P. & Chun, L.L. Immunological, morphological, and electrophysiological variation among retinal ganglion cells purified by panning. Neuron 1, 791–803 (1988).
    Article CAS PubMed Google Scholar
  32. Maune, J.F., Beckingham, K., Martin, S.R. & Bayley, P.M. Circular dichroism studies on calcium binding to two series of Ca2+ binding site mutants of Drosophila melanogaster calmodulin. Biochemistry 31, 7779–7786 (1992).
    Article CAS PubMed Google Scholar
  33. Pauls, T.L., Cox, J.A. & Berchtold, M.W. The Ca2+-binding proteins parvalbumin and oncomodulin and their genes: new structural and functional findings. Biochim. Biophys. Acta 1306, 39–54 (1996).
    Article PubMed Google Scholar
  34. Meyer-Franke, A. et al. Depolarization and cAMP elevation rapidly recruit TrkB to the plasma membrane of CNS neurons. Neuron 21, 681–693 (1998).
    Article CAS PubMed Central PubMed Google Scholar
  35. Cai, D., Shen, Y., De Bellard, M., Tang, S. & Filbin, M.T. Prior exposure to neurotrophins blocks inhibition of axonal regeneration by MAG and myelin via a cAMP-dependent mechanism. Neuron 22, 89–101 (1999).
    Article CAS PubMed Google Scholar
  36. MacMicking, J., Xie, Q.W. & Nathan, C. Nitric oxide and macrophage function. Annu. Rev. Immunol. 15, 323–350 (1997).
    Article CAS PubMed Google Scholar
  37. Steinmetz, M.P. et al. Chronic enhancement of the intrinsic growth capacity of sensory neurons combined with the degradation of inhibitory proteoglycans allows functional regeneration of sensory axons through the dorsal root entry zone in the mammalian spinal cord. J. Neurosci. 25, 8066–8076 (2005).
    Article CAS PubMed Central PubMed Google Scholar
  38. Lu, X. & Richardson, P.M. Inflammation near the nerve cell body enhances axonal regeneration. J. Neurosci. 11, 972–978 (1991).
    Article CAS PubMed PubMed Central Google Scholar
  39. Rapalino, O. et al. Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat. Med. 4, 814–821 (1998).
    Article CAS PubMed Google Scholar
  40. Porter, A.C. et al. M1 muscarinic receptor signaling in mouse hippocampus and cortex. Brain Res. 944, 82–89 (2002).
    Article CAS PubMed Google Scholar
  41. Buxser, S., Decker, D. & Ruppel, P. Relationship among types of nerve growth factor receptors on PC12 cells. J. Biol. Chem. 265, 12701–12710 (1990).
    CAS PubMed Google Scholar
  42. Goldberg, J.L. et al. Retinal ganglion cells do not extend axons by default: promotion by neurotrophic signaling and electrical activity. Neuron 33, 689–702 (2002).
    Article CAS PubMed Google Scholar
  43. Streilein, J.W., Wilbanks, G.A., Taylor, A. & Cousins, S. Eye-derived cytokines and the immunosuppressive intraocular microenvironment: a review. Curr. Eye Res. 11 Suppl: 41–47 (1992).
    Article PubMed Google Scholar
  44. Cohen-Cory, S. & Fraser, S.E. Effects of brain-derived neurotrophic factor on optic axon branching and remodelling in vivo. Nature 378, 192–196 (1995).
    Article CAS PubMed Google Scholar
  45. McKinnon, S.J. et al. Baculoviral IAP repeat-containing-4 protects optic nerve axons in a rat glaucoma model. Mol. Ther. 5, 780–787 (2002).
    Article CAS PubMed Google Scholar
  46. Otori, Y., Wei, J.Y. & Barnstable, C.J. Neurotoxic effects of low doses of glutamate on purified rat retinal ganglion cells. Invest. Ophthalmol. Vis. Sci. 39, 972–981 (1998).
    CAS PubMed Google Scholar
  47. Hapak, R.C., Lammers, P.J., Palmisano, W.A., Birnbaum, E.R. & Henzl, M.T. Site-specific substitution of glutamate for aspartate at position 59 of rat oncomodulin. J. Biol. Chem. 264, 18751–18760 (1989).
    CAS PubMed Google Scholar
  48. Flanagan, J.G. et al. Alkaline phosphatase fusions of ligands or receptors as in situ probes for staining of cells, tissues, and embryos. Methods Enzymol. 327, 19–35 (2000).
    Article CAS PubMed Google Scholar
  49. Fu, K. et al. A potential approach for decreasing the burst effect of protein from PLGA microspheres. J. Pharm. Sci. 92, 1582–1591 (2003).
    Article CAS PubMed Google Scholar
  50. Gavazzi, I., Kumar, R.D., McMahon, S.B. & Cohen, J. Growth responses of different subpopulations of adult sensory neurons to neurotrophic factors in vitro. Eur. J. Neurosci. 11, 3405–3414 (1999).
    Article CAS PubMed Google Scholar

Download references