Oncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglion cells (original) (raw)
References
Ramon y Cajal, S. Degeneration and Regeneration of the Nervous System (Oxford Univ. Press, New York, 1991). Book Google Scholar
Aguayo, A.J. et al. Degenerative and regenerative responses of injured neurons in the central nervous system of adult mammals. Philos. Trans. R. Soc. Lond. B Biol. Sci.331, 337–343 (1991). ArticleCASPubMed Google Scholar
Chierzi, S., Strettoi, E., Cenni, M.C. & Maffei, L. Optic nerve crush: axonal responses in wild-type and bcl-2 transgenic mice. J. Neurosci.19, 8367–8376 (1999). ArticleCASPubMed CentralPubMed Google Scholar
Monsul, N.T. et al. Intraocular injection of dibutyryl cyclic AMP promotes axon regeneration in rat optic nerve. Exp. Neurol.186, 124–133 (2004). ArticleCASPubMed Google Scholar
Kermer, P., Klocker, N., Labes, M. & Bahr, M. Inhibition of CPP32-like proteases rescues axotomized retinal ganglion cells from secondary cell death in vivo. J. Neurosci.18, 4656–4662 (1998). ArticleCASPubMed CentralPubMed Google Scholar
Mey, J. & Thanos, S. Intravitreal injections of neurotrophic factors support the survival of axotomized retinal ganglion cells in adult rats in vivo. Brain Res.602, 304–317 (1993). ArticleCASPubMed Google Scholar
Pernet, V. & Di Polo, A. Synergistic action of brain-derived neurotrophic factor and lens injury promotes retinal ganglion cell survival, but leads to optic nerve dystrophy in vivo. Brain (2006).
Koeberle, P.D. & Ball, A.K. Effects of GDNF on retinal ganglion cell survival following axotomy. Vision Res.38, 1505–1515 (1998). ArticleCASPubMed Google Scholar
Cheng, L., Sapieha, P., Kittlerova, P., Hauswirth, W.W. & Di Polo, A. TrkB gene transfer protects retinal ganglion cells from axotomy-induced death in vivo. J. Neurosci.22, 3977–3986 (2002). ArticleCASPubMed CentralPubMed Google Scholar
Zhou, Y., Pernet, V., Hauswirth, W.W. & Di Polo, A. Activation of the extracellular signal-regulated kinase 1/2 pathway by AAV gene transfer protects retinal ganglion cells in glaucoma. Mol. Ther.12, 402–412 (2005). ArticleCASPubMed Google Scholar
Weibel, D., Cadelli, D. & Schwab, M.E. Regeneration of lesioned rat optic nerve fibers is improved after neutralization of myelin-associated neurite growth inhibitors. Brain Res.642, 259–266 (1994). ArticleCASPubMed Google Scholar
Fischer, D., He, Z. & Benowitz, L.I. Counteracting the Nogo receptor enhances optic nerve regeneration if retinal ganglion cells are in an active growth state. J. Neurosci.24, 1646–1651 (2004). ArticleCASPubMed CentralPubMed Google Scholar
Fischer, D., Petkova, V., Thanos, S. & Benowitz, L.I. Switching mature retinal ganglion cells to a robust growth state in vivo: gene expression and synergy with RhoA inactivation. J. Neurosci.24, 8726–8740 (2004). ArticleCASPubMed CentralPubMed Google Scholar
Koprivica, V. et al. EGFR activation mediates inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans. Science310, 106–110 (2005). ArticleCASPubMed Google Scholar
Berry, M., Carlile, J. & Hunter, A. Peripheral nerve explants grafted into the vitreous body of the eye promote the regeneration of retinal ganglion cell axons severed in the optic nerve. J. Neurocytol.25, 147–170 (1996). ArticleCASPubMed Google Scholar
Leon, S., Yin, Y., Nguyen, J., Irwin, N. & Benowitz, L.I. Lens injury stimulates axon regeneration in the mature rat optic nerve. J. Neurosci.20, 4615–4626 (2000). ArticleCASPubMed CentralPubMed Google Scholar
Fischer, D., Heiduschka, P. & Thanos, S. Lens-injury-stimulated axonal regeneration throughout the optic pathway of adult rats. Exp. Neurol.172, 257–272 (2001). ArticleCASPubMed Google Scholar
Lorber, B., Berry, M. & Logan, A. Lens injury stimulates adult mouse retinal ganglion cell axon regeneration via both macrophage- and lens-derived factors. Eur. J. Neurosci.21, 2029–2034 (2005). ArticlePubMed Google Scholar
Li, Y., Irwin, N., Yin, Y., Lanser, M. & Benowitz, L.I. Axon regeneration in goldfish and rat retinal ganglion cells: differential responsiveness to carbohydrates and cAMP. J. Neurosci.23, 7830–7838 (2003). ArticleCASPubMed CentralPubMed Google Scholar
Lorber, B., Berry, M., Logan, A. & Tonge, D. Effect of lens lesion on neurite outgrowth of retinal ganglion cells in vitro. Mol. Cell. Neurosci.21, 301–311 (2002). ArticleCASPubMed Google Scholar
Henzl, M.T., Larson, J.D. & Agah, S. Influence of monovalent cation identity on parvalbumin divalent ion-binding properties. Biochemistry43, 2747–2763 (2004). ArticleCASPubMed Google Scholar
Henzl, M.T., Shibasaki, O., Comegys, T.H., Thalmann, I. & Thalmann, R. Oncomodulin is abundant in the organ of Corti. Hear. Res.106, 105–111 (1997). ArticleCASPubMed Google Scholar
Meyer-Franke, A., Kaplan, M.R., Pfrieger, F.W. & Barres, B.A. Characterization of the signaling interactions that promote the survival and growth of developing retinal ganglion cells in culture. Neuron15, 805–819 (1995). ArticleCASPubMed Google Scholar
Jo, S., Wang, E. & Benowitz, L.I. CNTF is an endogenous axon regeneration factor for mammalian retinal ganglion cells. Neuroscience89, 579–591 (1999). ArticleCASPubMed Google Scholar
Mansour-Robaey, S., Clarke, D.B., Wang, Y.C., Bray, G.M. & Aguayo, A.J. Effects of ocular injury and administration of brain-derived neurotrophic factor on survival and regrowth of axotomized retinal ganglion cells. Proc. Natl. Acad. Sci. USA91, 1632–1636 (1994). ArticleCASPubMed CentralPubMed Google Scholar
Cui, Q., Yip, H.K., Zhao, R.C., So, K.F. & Harvey, A.R. Intraocular elevation of cyclic AMP potentiates ciliary neurotrophic factor-induced regeneration of adult rat retinal ganglion cell axons. Mol. Cell. Neurosci.22, 49–61 (2003). ArticleCASPubMed Google Scholar
Barres, B.A., Silverstein, B.E., Corey, D.P. & Chun, L.L. Immunological, morphological, and electrophysiological variation among retinal ganglion cells purified by panning. Neuron1, 791–803 (1988). ArticleCASPubMed Google Scholar
Maune, J.F., Beckingham, K., Martin, S.R. & Bayley, P.M. Circular dichroism studies on calcium binding to two series of Ca2+ binding site mutants of Drosophila melanogaster calmodulin. Biochemistry31, 7779–7786 (1992). ArticleCASPubMed Google Scholar
Pauls, T.L., Cox, J.A. & Berchtold, M.W. The Ca2+-binding proteins parvalbumin and oncomodulin and their genes: new structural and functional findings. Biochim. Biophys. Acta1306, 39–54 (1996). ArticlePubMed Google Scholar
Meyer-Franke, A. et al. Depolarization and cAMP elevation rapidly recruit TrkB to the plasma membrane of CNS neurons. Neuron21, 681–693 (1998). ArticleCASPubMed CentralPubMed Google Scholar
Cai, D., Shen, Y., De Bellard, M., Tang, S. & Filbin, M.T. Prior exposure to neurotrophins blocks inhibition of axonal regeneration by MAG and myelin via a cAMP-dependent mechanism. Neuron22, 89–101 (1999). ArticleCASPubMed Google Scholar
MacMicking, J., Xie, Q.W. & Nathan, C. Nitric oxide and macrophage function. Annu. Rev. Immunol.15, 323–350 (1997). ArticleCASPubMed Google Scholar
Steinmetz, M.P. et al. Chronic enhancement of the intrinsic growth capacity of sensory neurons combined with the degradation of inhibitory proteoglycans allows functional regeneration of sensory axons through the dorsal root entry zone in the mammalian spinal cord. J. Neurosci.25, 8066–8076 (2005). ArticleCASPubMed CentralPubMed Google Scholar
Rapalino, O. et al. Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat. Med.4, 814–821 (1998). ArticleCASPubMed Google Scholar
Porter, A.C. et al. M1 muscarinic receptor signaling in mouse hippocampus and cortex. Brain Res.944, 82–89 (2002). ArticleCASPubMed Google Scholar
Buxser, S., Decker, D. & Ruppel, P. Relationship among types of nerve growth factor receptors on PC12 cells. J. Biol. Chem.265, 12701–12710 (1990). CASPubMed Google Scholar
Goldberg, J.L. et al. Retinal ganglion cells do not extend axons by default: promotion by neurotrophic signaling and electrical activity. Neuron33, 689–702 (2002). ArticleCASPubMed Google Scholar
Streilein, J.W., Wilbanks, G.A., Taylor, A. & Cousins, S. Eye-derived cytokines and the immunosuppressive intraocular microenvironment: a review. Curr. Eye Res.11 Suppl: 41–47 (1992). ArticlePubMed Google Scholar
Cohen-Cory, S. & Fraser, S.E. Effects of brain-derived neurotrophic factor on optic axon branching and remodelling in vivo. Nature378, 192–196 (1995). ArticleCASPubMed Google Scholar
McKinnon, S.J. et al. Baculoviral IAP repeat-containing-4 protects optic nerve axons in a rat glaucoma model. Mol. Ther.5, 780–787 (2002). ArticleCASPubMed Google Scholar
Otori, Y., Wei, J.Y. & Barnstable, C.J. Neurotoxic effects of low doses of glutamate on purified rat retinal ganglion cells. Invest. Ophthalmol. Vis. Sci.39, 972–981 (1998). CASPubMed Google Scholar
Hapak, R.C., Lammers, P.J., Palmisano, W.A., Birnbaum, E.R. & Henzl, M.T. Site-specific substitution of glutamate for aspartate at position 59 of rat oncomodulin. J. Biol. Chem.264, 18751–18760 (1989). CASPubMed Google Scholar
Flanagan, J.G. et al. Alkaline phosphatase fusions of ligands or receptors as in situ probes for staining of cells, tissues, and embryos. Methods Enzymol.327, 19–35 (2000). ArticleCASPubMed Google Scholar
Fu, K. et al. A potential approach for decreasing the burst effect of protein from PLGA microspheres. J. Pharm. Sci.92, 1582–1591 (2003). ArticleCASPubMed Google Scholar
Gavazzi, I., Kumar, R.D., McMahon, S.B. & Cohen, J. Growth responses of different subpopulations of adult sensory neurons to neurotrophic factors in vitro. Eur. J. Neurosci.11, 3405–3414 (1999). ArticleCASPubMed Google Scholar