A post-docking role for active zone protein Rim (original) (raw)

References

  1. Burns, M. & Augustine, G. Synaptic structure and function: dynamic organization yields architectural precision. Cell 83, 187–194 (1995).
    Article CAS PubMed Google Scholar
  2. Heuser, J. E. & Reese, T. S. in Handbook of Physiology I: The Nervous System (eds. Kandel, E. R.) 261–294 (American Physiological Society, Baltimore, 1973).
    Google Scholar
  3. Landis, D. M., Hall, A. K., Weinstein, L. A. & Reese, T. S. The organization of cytoplasm at the presynaptic active zone of a central nervous system synapse. Neuron 1, 201–209 (1988).
    Article CAS PubMed Google Scholar
  4. Garner, C. C., Kindler, S. & Gundelfinger, E. D. Molecular determinants of presynaptic active zones. Curr. Opin. Neurobiol. 10, 321–327 (2000).
    Article CAS PubMed Google Scholar
  5. Wang, Y., Okamoto, M., Schmitz, F., Hofmann, K. & Südhof, T. C. Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion. Nature 388, 593–598 (1997).
    Article CAS PubMed Google Scholar
  6. Ozaki, N. et al. cAMP-GEFII is a direct target of cAMP in regulated exocytosis. Nat. Cell Biol. 2, 805–811 (2000).
    Article CAS PubMed Google Scholar
  7. Betz, A. et al. Functional interaction of the active zone proteins munc13-1 and rim1 in synaptic vesicle priming. Neuron 30, 183–196 (2001).
    Article CAS PubMed Google Scholar
  8. Fischer von Mollard, G. et al. rab3 is a small GTP-binding protein exclusively localized to synaptic vesicles. Proc. Natl. Acad. Sci. USA 87, 1988–1992 (1990).
    Article CAS PubMed PubMed Central Google Scholar
  9. Geppert, M. et al. The role of Rab3A in neurotransmitter release. Nature 369, 493–497 (1994).
    Article CAS PubMed Google Scholar
  10. Geppert, M. & Südhof, T. C. RAB3 and synaptotagmin: the yin and yang of synaptic membrane fusion. Annu. Rev. Neurosci. 21, 75–95 (1998).
    Article CAS PubMed Google Scholar
  11. Nonet, M. L. et al. C. elegans rab-3 mutant synapses exhibit impaired function and are partially depleted of vesicles. J. Neurosci. 17, 8021–8073 (1997).
    Article Google Scholar
  12. Christoforidis, S., McBride, H. M., Burgoyne, R. D. & Zerial, M. The Rab5 effector EEA1 is a core component of endosome docking. Nature 397, 621–625 (1999).
    Article CAS PubMed Google Scholar
  13. Dixon, D. & Atwood, H. L. Adenylate cyclase system is essential for long-term facilitation at the crayfish neuromuscular junction. J. Neurosci. 9, 4246–4252 (1989).
    Article CAS PubMed PubMed Central Google Scholar
  14. Zhong, Y. & Wu, C. F. Altered synaptic plasticity in Drosophila memory mutants with a defective cyclic AMP cascade. Science 251, 198–201 (1991).
    Article CAS PubMed Google Scholar
  15. Bailey, C. H., Bartsch, D. & Kandel, E. R. Toward a molecular definition of long-term memory storage. Proc. Natl. Acad. Sci. USA 93, 13445–13452 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  16. Nicoll, R. A. & Malenka, R. C. Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature 377, 115–118 (1995).
    Article CAS PubMed Google Scholar
  17. Aravamudan, B., Fergestad, T., Davis, W. S., Rodesch, C. K. & Broadie, K. Drosophila UNC-13 is essential for synaptic transmission. Nat. Neurosci. 2, 965–971 (1999).
    Article CAS PubMed Google Scholar
  18. Augustin, I., Rosenmund, C., Südhof, T. C. & Brose, N. Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles. Nature 400, 457–461 (1999).
    Article CAS PubMed Google Scholar
  19. Richmond, J. E., Davis, W. S. & Jorgensen, E. M. UNC-13 is required for synaptic vesicle fusion in C. elegans. Nat. Neurosci. 2, 959–964 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  20. Richmond, J. E., Weimer, R. M. & Jorgensen, E. M. An open form of syntaxin bypasses the requirement for UNC-13 in vesicle priming. Nature 412, 338–341 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  21. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).
    CAS PubMed PubMed Central Google Scholar
  22. Nguyen, M., Alfonso, A., Johnson, C. D. & Rand, J. B. Caenorhabditis elegans mutants resistant to inhibitors of acetylcholinesterase. Genetics 140, 527–535 (1995).
    CAS PubMed PubMed Central Google Scholar
  23. Miller, K.G. et al. A genetic selection for Caenorhabditis elegans synaptic transmission mutants. Proc. Natl. Acad. Sci. USA 93, 12593–12598 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  24. Rand, J. B. & Nonet, M. L. Synaptic transmission. in C. elegans II (eds. Riddle, D. L., Blumenthal, T., Meyer, B. J. & Priess, J. R.) 611–644 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1997).
    Google Scholar
  25. Kohn, R. E. et al. Expression of multiple UNC-13 proteins in the Caenorhabditis elegans nervous system. Mol. Biol. Cell 11, 3441–3452 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  26. Nonet, M. L., Saifee, O., Zhao, H., Rand, J. B. & Wei, L. Synaptic transmission deficits in C. elegans synaptobrevin mutants. J. Neurosci. 18, 70–80 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  27. Saifee, O., Wei, L. P. & Nonet, M. L. The C. elegans unc-64 gene encodes a syntaxin which interacts genetically with synaptobrevin. Mol. Biol. Cell 9, 1235–1252 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  28. Iwasaki, K., Staunton, J., Saifee, O., Nonet, M. L. & Thomas, J. aex-3 encodes a novel regulator of presynaptic activity in C. elegans. Neuron 18, 613–622 (1997).
    Article CAS PubMed Google Scholar
  29. Shirataki, H. et al. Rabphilin-3A, a putative target protein for smg p25A/rab3A p25 small GTP-binding protein related to synaptotagmin. Mol. Cell Biol. 13, 2061–2068 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  30. Staunton, J., Ganetzky, B. & Nonet, M. L. Rabphilin potentiates SNARE function independently of rab3. J. Neurosci. (in press).
  31. Wang, Y., Sugita, S. & Sudhof, T. C. The RIM/NIM family of neuronal C2 domain proteins. Interactions with Rab3 and a new class of Src homology 3 domain proteins. J. Biol. Chem. 275, 20033–20044 (2000).
    Article CAS PubMed Google Scholar
  32. Hall, D. H. & Hedgecock, E. M. Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans. Cell 65, 837–847 (1991).
    Article CAS PubMed Google Scholar
  33. Nonet, M. L., Grundahl, K., Meyer, B. J. & Rand, J. B. Synaptic function is impaired but not eliminated in C. elegans mutants lacking synaptotagmin. Cell 73, 1291–1305 (1993).
    Article CAS PubMed Google Scholar
  34. Richmond, J. E. & Jorgensen, E. M. One GABA and two acetylcholine receptors function at the C. elegans neuromuscular junction. Nat. Neurosci. 2, 791–797 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  35. Klenchin, V. A. & Martin, T. F. Priming in exocytosis: attaining fusion-competence after vesicle docking. Biochimie 82, 399–407 (2000).
    Article CAS PubMed Google Scholar
  36. Rizo, J. & Südhof, T. C. C2-domains, structure and function of a universal Ca2+-binding domain. J. Biol. Chem. 273, 15879–15882 (1998).
    Article CAS PubMed Google Scholar
  37. Chen, Y. A., Scales, S. J. & Scheller, R. H. Sequential SNARE assembly underlies priming and triggering of exocytosis. Neuron 30, 161–170 (2001).
    Article CAS PubMed Google Scholar
  38. Dulubova, I. et al. A conformational switch in syntaxin during exocytosis: role of munc18. EMBO J. 18, 4372–4382 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  39. Harris, T. W., Hartwieg, E., Horvitz, H. R. & Jorgensen, E. M. Mutations in synaptojanin disrupt synaptic vesicle recycling. J. Cell Biol. 150, 589–600 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  40. Nonet, M.L. et al. UNC-11, a C. elegans AP180 homolog, regulates the size and protein composition of synaptic vesicles. Mol. Biol. Cell 10, 2343–2360 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  41. Jorgensen, E. M. et al. Defective recycling of synaptic vesicles in synaptotagmin mutants of Caenorhabditis elegans. Nature 378, 196–199 (1995).
    Article CAS PubMed Google Scholar
  42. Sulston, J. & Hodgkin, J. in The Nematode Caenorhabditis elegans (ed. Wood, W.B.) 587–606 (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1988).
    Google Scholar
  43. Schultz, J., Milpetz, F., Bork, P. & Ponting, C. P. SMART, a simple modular architecture research tool: identification of signaling domains. Proc. Natl. Acad. Sci. USA 95, 5857–5864 (1998).
    Article CAS PubMed PubMed Central Google Scholar

Download references