Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation (original) (raw)
References
Roy, C.S. & Sherrington, C. On the regulation of the blood supply of the brain. J. Physiol.11, 85–108 (1890). ArticleCAS Google Scholar
Reinhard, J.F. Jr., Liebmann, J.E., Schlosberg, A.J. & Moskowitz, M.A. Serotonin neurons project to small blood vessels in the brain. Science206, 85–87 (1979). ArticleCAS Google Scholar
Vaucher, E. & Hamel, E. Cholinergic basal forebrain neurons project to cortical microvessels in the rat: electron microscopic study with anterogradely transported Phaseolus vulgaris leucoagglutinin and choline acetyltransferase immunocytochemistry. J. Neurosci.15, 7427–7441 (1995). ArticleCAS Google Scholar
Paspalas, C.D. & Papadopoulos, G.C. Ultrastructural evidence for combined action of noradrenaline and vasoactive intestinal polypeptide upon neurons, astrocytes, and blood vessels of the rat cerebral cortex. Brain Res. Bull.45, 247–259 (1998). ArticleCAS Google Scholar
Yang, G., Huard, J.M., Beitz, A.J., Ross, M.E. & Iadecola, C. Stellate neurons mediate functional hyperemia in the cerebellar molecular layer. J. Neurosci.20, 6968–6973 (2000). ArticleCAS Google Scholar
Faraci, F.M. & Heistad, D.D. Regulation of the cerebral circulation: role of endothelium and potassium channels. Physiol. Rev.78, 53–97 (1998). ArticleCAS Google Scholar
Golgi, C. Sulla fina anatomia degli organi centrali del sistema nervoso. Riv. Sper. Fremiat. Med. Leg. Alienazioni Ment.11, 72–123 (1885). Google Scholar
Peters, A., Palay, S.L. & Webster, H.d.F. in The Fine Structure of the Central Nervous System: Neurons and Their Supportive Cells (ed. Press, O.U.) 276–295 (Oxford Univ. Press, New York, 1991). Google Scholar
Ventura, R. & Harris, K.M. Three-dimensional relationships between hippocampal synapses and astrocytes. J. Neurosci.19, 6897–6906 (1999). ArticleCAS Google Scholar
Porter, J.T. & McCarthy, K.D. Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals. J. Neurosci.16, 5073–5081 (1996). ArticleCAS Google Scholar
Pasti, L., Volterra, A., Pozzan, T. & Carmignoto, G. Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J. Neurosci.17, 7817–7830 (1997). ArticleCAS Google Scholar
Kang, J., Jiang, L., Goldman, S.A. & Nedergaard, M. Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat. Neurosci.1, 683–692 (1998). ArticleCAS Google Scholar
Alkayed, N.J. et al. Role of P-450 arachidonic acid epoxygenase in the response of cerebral blood flow to glutamate in rats. Stroke28, 1066–1072 (1997). ArticleCAS Google Scholar
Bezzi, P. et al. Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature391, 281–285 (1998). ArticleCAS Google Scholar
Sagher, O. et al. Live computerized videomicroscopy of cerebral microvessels in brain slices. J. Cereb. Blood Flow Metab.13, 676–682 (1993). ArticleCAS Google Scholar
Fergus, A., Jin, Y., Thai, Q.A., Kassell, N.F. & Lee, K.S. Vasodilatory actions of calcitonin gene-related peptide and nitric oxide in parenchymal microvessels of the rat hippocampus. Brain Res.694, 78–84 (1995). ArticleCAS Google Scholar
Farber, N.E. et al. Region-specific and agent-specific dilation of intracerebral microvessels by volatile anesthetics in rat brain slices. Anesthesiology87, 1191–1198 (1997). ArticleCAS Google Scholar
Gasparini, F. et al. 2-Methyl-6-(phenylethynyl)-pyridine (MPEP), a potent, selective and systemically active mGlu5 receptor antagonist. Neuropharmacology38, 1493–1503 (1999). ArticleCAS Google Scholar
Garthwaite, J., Charles, S.L. & Chess-Williams, R. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature336, 385–388 (1988). ArticleCAS Google Scholar
Garthwaite, J. Glutamate, nitric oxide and cell-cell signaling in the nervous system. Trends Neurosci.14, 60–67 (1991). ArticleCAS Google Scholar
Iadecola, C. Regulation of the cerebral microcirculation during neural activity: is nitric oxide the missing link? Trends Neurosci.16, 206–214 (1993). ArticleCAS Google Scholar
Fergus, A. & Lee, K.S. Regulation of cerebral microvessels by glutamatergic mechanisms. Brain Res.754, 35–45 (1997). ArticleCAS Google Scholar
Fagni, L., Chavis, P., Ango, F. & Bockaert, J. Complex interactions between mGluRs, intracellular Ca2+ stores and ion channels in neurons. Trends Neurosci.23, 80–88 (2000). ArticleCAS Google Scholar
Skeberdis, V.A. et al. mGluR1-mediated potentiation of NMDA receptors involves a rise in intracellular calcium and activation of protein kinase C. Neuropharmacology40, 856–865 (2001). ArticleCAS Google Scholar
Schiavo, G. et al. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature359, 832–835 (1992). ArticleCAS Google Scholar
Parpura, V. et al. Glutamate-mediated astrocyte-neuron signalling. Nature369, 744–747 (1994). ArticleCAS Google Scholar
Monn, J.A. et al. Synthesis, pharmacological characterization, and molecular modeling of heterobicyclic amino acids related to (+)-2-aminobicyclo[3.1.0] hexane- 2,6-dicarboxylic acid (LY354740): identification of two new potent, selective, and systemically active agonists for group II metabotropic glutamate receptors. J. Med. Chem.42, 1027–1040 (1999). ArticleCAS Google Scholar
Schmitz, B., Bottiger, B.W. & Hossmann, K.A. Functional activation of cerebral blood flow after cardiac arrest in rat. J. Cereb. Blood Flow Metab.17, 1202–1209 (1997). ArticleCAS Google Scholar
White, R.P., Deane, C., Vallance, P. & Markus, H.S. Nitric oxide synthase inhibition in humans reduces cerebral blood flow but not the hyperemic response to hypercapnia. Stroke29, 467–472 (1998). ArticleCAS Google Scholar
Lindauer, U., Megow, D., Matsuda, H. & Dirnagl, U. Nitric oxide: a modulator, but not a mediator, of neurovascular coupling in rat somatosensory cortex. Am. J. Physiol.277, 799–811 (1999). Google Scholar
Iadecola, C., Zhang, F. & Xu, X. Role of nitric oxide synthase-containing vascular nerves in cerebrovasodilation elicited from cerebellum. Am. J. Physiol.264, 738–746 (1993). Google Scholar
Yang, G., Chen, G., Ebner, T.J. & Iadecola, C. Nitric oxide is the predominant mediator of cerebellar hyperemia during somatosensory activation in rats. Am. J. Physiol.277, 1760–1770 (1999). Article Google Scholar
Golanov, E.V. & Reis, D.J. Nitric oxide and prostanoids participate in cerebral vasodilation elicited by electrical stimulation of the rostral ventrolateral medulla. J. Cereb. Blood Flow Metab.14, 492–502 (1994). ArticleCAS Google Scholar
Bakalova, R., Matsuura, T. & Kanno, I. The cyclooxygenase inhibitors indomethacin and Rofecoxib reduce regional cerebral blood flow evoked by somatosensory stimulation in rats. Exp. Biol. Med.227, 465–473 (2002). ArticleCAS Google Scholar
Niwa, K., Araki, E., Morham, S.G., Ross, M.E. & Iadecola, C. Cyclooxygenase-2 contributes to functional hyperemia in whisker-barrel cortex. J. Neurosci.20, 763–770 (2000). ArticleCAS Google Scholar
Brinker, G. et al. Simultaneous recording of evoked potentials and T2*-weighted MR images during somatosensory stimulation of rat. Magn. Reson. Med.41, 469–473 (1999). ArticleCAS Google Scholar
Carmignoto, G. Reciprocal communication systems between astrocytes and neurones. Prog. Neurobiol.62, 561–581 (2000). ArticleCAS Google Scholar
Haydon, P.G. GLIA: listening and talking to the synapse. Nat. Rev. Neurosci.2, 185–193 (2001). ArticleCAS Google Scholar
Robitaille, R. Modulation of synaptic efficacy and synaptic depression by glial cells at the frog neuromuscular junction. Neuron21, 847–855 (1998). ArticleCAS Google Scholar
Araque, A., Sanzgiri, R.P., Parpura, V. & Haydon, P.G. Calcium elevation in astrocytes causes an NMDA receptor-dependent increase in the frequency of miniature synaptic currents in cultured hippocampal neurons. J. Neurosci.18, 6822–6829 (1998). ArticleCAS Google Scholar
Parri, H.R., Gould, T.M. & Crunelli, V. Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR-mediated neuronal excitation. Nat. Neurosci.4, 803–812 (2001). ArticleCAS Google Scholar
de la Torre, J.C. Alzheimer disease as a vascular disorder: nosological evidence. Stroke33, 1152–1162 (2002). ArticleCAS Google Scholar
Fox, P.T., Raichle, M.E., Mintun, M.A. & Dence, C. Nonoxidative glucose consumption during focal physiologic neural activity. Science241, 462–464 (1988). ArticleCAS Google Scholar
Logothetis, N.K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature412, 150–157 (2001). ArticleCAS Google Scholar
Pellerin, L. & Magistretti, P.J. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc. Natl. Acad. Sci. USA91, 10625–10629 (1994). ArticleCAS Google Scholar
Carmignoto, G. & Vicini, S. Activity-dependent decrease in NMDA receptor responses during development of the visual cortex. Science258, 1007–1011 (1992). ArticleCAS Google Scholar