Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation (original) (raw)

References

  1. Roy, C.S. & Sherrington, C. On the regulation of the blood supply of the brain. J. Physiol. 11, 85–108 (1890).
    Article CAS Google Scholar
  2. Reinhard, J.F. Jr., Liebmann, J.E., Schlosberg, A.J. & Moskowitz, M.A. Serotonin neurons project to small blood vessels in the brain. Science 206, 85–87 (1979).
    Article CAS Google Scholar
  3. Vaucher, E. & Hamel, E. Cholinergic basal forebrain neurons project to cortical microvessels in the rat: electron microscopic study with anterogradely transported Phaseolus vulgaris leucoagglutinin and choline acetyltransferase immunocytochemistry. J. Neurosci. 15, 7427–7441 (1995).
    Article CAS Google Scholar
  4. Krimer, L.S., Muly, E.C., Williams, G.V. & Goldman-Rakic, P.S. Dopaminergic regulation of cerebral cortical microcirculation. Nat. Neurosci. 1, 286–289 (1998).
    Article CAS Google Scholar
  5. Paspalas, C.D. & Papadopoulos, G.C. Ultrastructural evidence for combined action of noradrenaline and vasoactive intestinal polypeptide upon neurons, astrocytes, and blood vessels of the rat cerebral cortex. Brain Res. Bull. 45, 247–259 (1998).
    Article CAS Google Scholar
  6. Yang, G., Huard, J.M., Beitz, A.J., Ross, M.E. & Iadecola, C. Stellate neurons mediate functional hyperemia in the cerebellar molecular layer. J. Neurosci. 20, 6968–6973 (2000).
    Article CAS Google Scholar
  7. Faraci, F.M. & Heistad, D.D. Regulation of the cerebral circulation: role of endothelium and potassium channels. Physiol. Rev. 78, 53–97 (1998).
    Article CAS Google Scholar
  8. Golgi, C. Sulla fina anatomia degli organi centrali del sistema nervoso. Riv. Sper. Fremiat. Med. Leg. Alienazioni Ment. 11, 72–123 (1885).
    Google Scholar
  9. Peters, A., Palay, S.L. & Webster, H.d.F. in The Fine Structure of the Central Nervous System: Neurons and Their Supportive Cells (ed. Press, O.U.) 276–295 (Oxford Univ. Press, New York, 1991).
    Google Scholar
  10. Ventura, R. & Harris, K.M. Three-dimensional relationships between hippocampal synapses and astrocytes. J. Neurosci. 19, 6897–6906 (1999).
    Article CAS Google Scholar
  11. Porter, J.T. & McCarthy, K.D. Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals. J. Neurosci. 16, 5073–5081 (1996).
    Article CAS Google Scholar
  12. Pasti, L., Volterra, A., Pozzan, T. & Carmignoto, G. Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J. Neurosci. 17, 7817–7830 (1997).
    Article CAS Google Scholar
  13. Kang, J., Jiang, L., Goldman, S.A. & Nedergaard, M. Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat. Neurosci. 1, 683–692 (1998).
    Article CAS Google Scholar
  14. Alkayed, N.J. et al. Role of P-450 arachidonic acid epoxygenase in the response of cerebral blood flow to glutamate in rats. Stroke 28, 1066–1072 (1997).
    Article CAS Google Scholar
  15. Bezzi, P. et al. Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391, 281–285 (1998).
    Article CAS Google Scholar
  16. Sagher, O. et al. Live computerized videomicroscopy of cerebral microvessels in brain slices. J. Cereb. Blood Flow Metab. 13, 676–682 (1993).
    Article CAS Google Scholar
  17. Fergus, A., Jin, Y., Thai, Q.A., Kassell, N.F. & Lee, K.S. Vasodilatory actions of calcitonin gene-related peptide and nitric oxide in parenchymal microvessels of the rat hippocampus. Brain Res. 694, 78–84 (1995).
    Article CAS Google Scholar
  18. Farber, N.E. et al. Region-specific and agent-specific dilation of intracerebral microvessels by volatile anesthetics in rat brain slices. Anesthesiology 87, 1191–1198 (1997).
    Article CAS Google Scholar
  19. Gasparini, F. et al. 2-Methyl-6-(phenylethynyl)-pyridine (MPEP), a potent, selective and systemically active mGlu5 receptor antagonist. Neuropharmacology 38, 1493–1503 (1999).
    Article CAS Google Scholar
  20. Garthwaite, J., Charles, S.L. & Chess-Williams, R. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 336, 385–388 (1988).
    Article CAS Google Scholar
  21. Garthwaite, J. Glutamate, nitric oxide and cell-cell signaling in the nervous system. Trends Neurosci. 14, 60–67 (1991).
    Article CAS Google Scholar
  22. Iadecola, C. Regulation of the cerebral microcirculation during neural activity: is nitric oxide the missing link? Trends Neurosci. 16, 206–214 (1993).
    Article CAS Google Scholar
  23. Fergus, A. & Lee, K.S. Regulation of cerebral microvessels by glutamatergic mechanisms. Brain Res. 754, 35–45 (1997).
    Article CAS Google Scholar
  24. Fagni, L., Chavis, P., Ango, F. & Bockaert, J. Complex interactions between mGluRs, intracellular Ca2+ stores and ion channels in neurons. Trends Neurosci. 23, 80–88 (2000).
    Article CAS Google Scholar
  25. Skeberdis, V.A. et al. mGluR1-mediated potentiation of NMDA receptors involves a rise in intracellular calcium and activation of protein kinase C. Neuropharmacology 40, 856–865 (2001).
    Article CAS Google Scholar
  26. Schiavo, G. et al. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359, 832–835 (1992).
    Article CAS Google Scholar
  27. Parpura, V. et al. Glutamate-mediated astrocyte-neuron signalling. Nature 369, 744–747 (1994).
    Article CAS Google Scholar
  28. Monn, J.A. et al. Synthesis, pharmacological characterization, and molecular modeling of heterobicyclic amino acids related to (+)-2-aminobicyclo[3.1.0] hexane- 2,6-dicarboxylic acid (LY354740): identification of two new potent, selective, and systemically active agonists for group II metabotropic glutamate receptors. J. Med. Chem. 42, 1027–1040 (1999).
    Article CAS Google Scholar
  29. Schmitz, B., Bottiger, B.W. & Hossmann, K.A. Functional activation of cerebral blood flow after cardiac arrest in rat. J. Cereb. Blood Flow Metab. 17, 1202–1209 (1997).
    Article CAS Google Scholar
  30. White, R.P., Deane, C., Vallance, P. & Markus, H.S. Nitric oxide synthase inhibition in humans reduces cerebral blood flow but not the hyperemic response to hypercapnia. Stroke 29, 467–472 (1998).
    Article CAS Google Scholar
  31. Lindauer, U., Megow, D., Matsuda, H. & Dirnagl, U. Nitric oxide: a modulator, but not a mediator, of neurovascular coupling in rat somatosensory cortex. Am. J. Physiol. 277, 799–811 (1999).
    Google Scholar
  32. Iadecola, C., Zhang, F. & Xu, X. Role of nitric oxide synthase-containing vascular nerves in cerebrovasodilation elicited from cerebellum. Am. J. Physiol. 264, 738–746 (1993).
    Google Scholar
  33. Yang, G., Chen, G., Ebner, T.J. & Iadecola, C. Nitric oxide is the predominant mediator of cerebellar hyperemia during somatosensory activation in rats. Am. J. Physiol. 277, 1760–1770 (1999).
    Article Google Scholar
  34. Golanov, E.V. & Reis, D.J. Nitric oxide and prostanoids participate in cerebral vasodilation elicited by electrical stimulation of the rostral ventrolateral medulla. J. Cereb. Blood Flow Metab. 14, 492–502 (1994).
    Article CAS Google Scholar
  35. Bakalova, R., Matsuura, T. & Kanno, I. The cyclooxygenase inhibitors indomethacin and Rofecoxib reduce regional cerebral blood flow evoked by somatosensory stimulation in rats. Exp. Biol. Med. 227, 465–473 (2002).
    Article CAS Google Scholar
  36. Niwa, K., Araki, E., Morham, S.G., Ross, M.E. & Iadecola, C. Cyclooxygenase-2 contributes to functional hyperemia in whisker-barrel cortex. J. Neurosci. 20, 763–770 (2000).
    Article CAS Google Scholar
  37. Brinker, G. et al. Simultaneous recording of evoked potentials and T2*-weighted MR images during somatosensory stimulation of rat. Magn. Reson. Med. 41, 469–473 (1999).
    Article CAS Google Scholar
  38. Carmignoto, G. Reciprocal communication systems between astrocytes and neurones. Prog. Neurobiol. 62, 561–581 (2000).
    Article CAS Google Scholar
  39. Haydon, P.G. GLIA: listening and talking to the synapse. Nat. Rev. Neurosci. 2, 185–193 (2001).
    Article CAS Google Scholar
  40. Robitaille, R. Modulation of synaptic efficacy and synaptic depression by glial cells at the frog neuromuscular junction. Neuron 21, 847–855 (1998).
    Article CAS Google Scholar
  41. Araque, A., Sanzgiri, R.P., Parpura, V. & Haydon, P.G. Calcium elevation in astrocytes causes an NMDA receptor-dependent increase in the frequency of miniature synaptic currents in cultured hippocampal neurons. J. Neurosci. 18, 6822–6829 (1998).
    Article CAS Google Scholar
  42. Parri, H.R., Gould, T.M. & Crunelli, V. Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR-mediated neuronal excitation. Nat. Neurosci. 4, 803–812 (2001).
    Article CAS Google Scholar
  43. de la Torre, J.C. Alzheimer disease as a vascular disorder: nosological evidence. Stroke 33, 1152–1162 (2002).
    Article CAS Google Scholar
  44. Raichle, M.E. Cognitive neuroscience. Bold insights. Nature 412, 128–130 (2001).
    Article CAS Google Scholar
  45. Fox, P.T., Raichle, M.E., Mintun, M.A. & Dence, C. Nonoxidative glucose consumption during focal physiologic neural activity. Science 241, 462–464 (1988).
    Article CAS Google Scholar
  46. Logothetis, N.K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157 (2001).
    Article CAS Google Scholar
  47. Pellerin, L. & Magistretti, P.J. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc. Natl. Acad. Sci. USA 91, 10625–10629 (1994).
    Article CAS Google Scholar
  48. Carmignoto, G. & Vicini, S. Activity-dependent decrease in NMDA receptor responses during development of the visual cortex. Science 258, 1007–1011 (1992).
    Article CAS Google Scholar

Download references