Microfluidic technologies for accelerating the clinical translation of nanoparticles (original) (raw)
Petros, R. A. & DeSimone, J. M. Strategies in the design of nanoparticles for therapeutic applications. Nature Rev. Drug. Discov.9, 615–627 (2010). ArticleCAS Google Scholar
Gregoriadis, G. Drug entrapment in liposomes. FEBS Lett.36, 292–296 (1973). ArticleCAS Google Scholar
Hrkach, J. et al. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci. Transl. Med.4, 128ra39 (2012). This article describes the translation of the first targeted polymeric nanoparticle for drug delivery from discovery to clinical trials. Article Google Scholar
Qiao, R., Yang, C. & Gao, M. Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications. J. Mater. Chem.19, 6274–6293 (2009). ArticleCAS Google Scholar
Haun, J. B. et al. Micro-NMR for rapid molecular analysis of human tumor samples. Sci. Transl. Med.3, 71ra16 (2011). Article Google Scholar
Kim, B. Y., Rutka, J. T. & Chan, W. C. Nanomedicine. N. Engl. J. Med.363, 2434–2443 (2010). ArticleCAS Google Scholar
Kamaly, N., Xiao, Z., Valencia, P. M., Radovic-Moreno, A. F. & Farokhzad, O. C. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem. Soc. Rev.41, 2971–3010 (2012). ArticleCAS Google Scholar
Peer, D. et al. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotech.2, 751–760 (2007). ArticleCAS Google Scholar
Barreto, J. A. et al. Nanomaterials: applications in cancer imaging and therapy. Adv. Mater.23, H18–H40 (2011). ArticleCAS Google Scholar
Shi, J., Xiao, Z., Kamaly, N. & Farokhzad, O. C. Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation. Acc. Chem. Res.44, 1123–1134 (2011). ArticleCAS Google Scholar
Murday, J. S., Siegel, R. W., Stein, J. & Wright, J. F. Translational nanomedicine: status assessment and opportunities. Nanomedicine5, 251–273 (2009). ArticleCAS Google Scholar
Chou, L. Y., Ming, K. & Chan, W. C. Strategies for the intracellular delivery of nanoparticles. Chem. Soc. Rev.40, 233–245 (2011). ArticleCAS Google Scholar
Nel, A. E. et al. Understanding biophysicochemical interactions at the nano–bio interface. Nature Mater.8, 543–557 (2009). ArticleCAS Google Scholar
Whitesides, G. M. The origins and the future of microfluidics. Nature442, 368–373 (2006). An excellent classic review on the present and future of microfluidics by one of the fathers of the field, George Whitesides. ArticleCAS Google Scholar
DeMello, A. J. Control and detection of chemical reactions in microfluidic systems. Nature442, 394–402 (2006). ArticleCAS Google Scholar
Johnson, B. K. & Prud'homme, R. K. Mechanism for rapid self-assembly of block copolymer nanoparticles. Phys. Rev. Lett.91, 118302 (2003). This article describes the mechanism of nanoparticle self-assembly and explains how rapid mixing is key in controlling nanoparticle size. Article Google Scholar
Chen, T., Hynninen, A. P., Prud'homme, R. K., Kevrekidis, I. G. & Panagiotopoulos, A. Z. Coarse-grained simulations of rapid assembly kinetics for polystyrene-_b_-poly(ethylene oxide) copolymers in aqueous solutions. J. Phys. Chem. B112, 16357–16366 (2008). ArticleCAS Google Scholar
Karnik, R. et al. Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett.8, 2906–2912 (2008). ArticleCAS Google Scholar
Capretto, L., Cheng, W., Hill, M. & Zhang, X. Micromixing within microfluidic devices. Top. Curr. Chem.304, 27–68 (2011). ArticleCAS Google Scholar
Rhee, M. et al. Synthesis of size-tunable polymeric nanoparticles enabled by 3D hydrodynamic flow focusing in single-layer microchannels. Adv. Mater.23, H79–H83 (2011). ArticleCAS Google Scholar
Liu, K. et al. A digital microfluidic droplet generator produces self-assembled supramolecular nanoparticles for targeted cell imaging. Nanotechnology21, 445603 (2010). Article Google Scholar
Valencia, P. M. et al. Single-step assembly of homogenous lipid-polymeric and lipid-quantum dot nanoparticles enabled by microfluidic rapid mixing. ACS Nano4, 1671–1679 (2010). ArticleCAS Google Scholar
Jahn, A. et al. Preparation of nanoparticles by continuous-flow microfluidics. J. Nanopart. Res.10, 925–934 (2008). ArticleCAS Google Scholar
Besson, C., Finney, E. E. & Finke, R. G. A mechanism for transition-metal nanoparticle self-assembly. J. Am. Chem. Soc.127, 8179–8184 (2005). ArticleCAS Google Scholar
Song, Y., Hormes, J. & Kumar, C. S. Microfluidic synthesis of nanomaterials. Small4, 698–711 (2008). ArticleCAS Google Scholar
Gu, F. X. et al. Targeted nanoparticles for cancer therapy. Nano Today2, 14–21 (2007). Article Google Scholar
Shestopalov, I., Tice, J. D. & Ismagilov, R. F. Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system. Lab Chip4, 316–321 (2004). ArticleCAS Google Scholar
Kikkeri, R., Laurino, P., Odedra, A. & Seeberger, P. H. Synthesis of carbohydrate-functionalized quantum dots in microreactors. Angew. Chem. Int. Ed.49, 2054–2057 (2010). ArticleCAS Google Scholar
Marre, S. & Jensen, K. F. Synthesis of micro and nanostructures in microfluidic systems. Chem. Soc. Rev.39, 1183–1202 (2010). ArticleCAS Google Scholar
Zhao, C. X., He, L. Z., Qiao, S. Z. & Middelberg, A. P. J. Nanoparticle synthesis in microreactors. Chem. Eng. Sci.66, 1463–1479 (2011). ArticleCAS Google Scholar
Fraikin, J. L., Teesalu, T., McKenney, C. M., Ruoslahti, E. & Cleland, A. N. A high-throughput label-free nanoparticle analyser. Nature Nanotech.6, 308–313 (2011). ArticleCAS Google Scholar
Birnbaumer, G. et al. Rapid liposome quality assessment using a lab-on-a-chip. Lab Chip11, 2753–2762 (2011). ArticleCAS Google Scholar
Wang, H. et al. A rapid pathway toward a superb gene delivery system: programming structural and functional diversity into a supramolecular nanoparticle library. ACS Nano4, 6235–6243 (2010). This article is one of the first examples that exploit microfluidic systems for rapid combinatorial synthesis of nanoparticles with a variety of physical and chemical properties. ArticleCAS Google Scholar
Chen, D. et al. Rapid discovery of potent siRNA-lipid-nanoparticles enabled by controlled microfluidic formulation. J. Am. Chem. Soc.134, 6948–6951 (2012). ArticleCAS Google Scholar
Kim, Y. et al. Mass production and size control of lipid-polymer hybrid nanoparticles through controlled microvortices. Nano Lett.12, 3587–3591 (2012). ArticleCAS Google Scholar
Dobrovolskaia, M. A., Germolec, D. R. & Weaver, J. L. Evaluation of nanoparticle immunotoxicity. Nature Nanotech.4, 411–414 (2009). ArticleCAS Google Scholar
Cho, E. C., Zhang, Q. & Xia, Y. The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nature Nanotech.6, 385–391 (2011). ArticleCAS Google Scholar
Ziolkowska, K., Kwapiszewski, R. & Brzozka, Z. Microfluidic devices as tools for mimicking the in vivo environment. New J. Chem.35, 979–990 (2011). ArticleCAS Google Scholar
Mahto, S. K., Yoon, T. H. & Rhee, S. W. A new perspective on in vitro assessment method for evaluating quantum dot toxicity by using microfluidics technology. Biomicrofluidics4, 034111 (2010). Article Google Scholar
Huh, D., Torisawa, Y. S., Hamilton, G. A., Kim, H. J. & Ingber, D. E. Microengineered physiological biomimicry: organs-on-chips. Lab Chip12, 2156–2164 (2012). ArticleCAS Google Scholar
Huh, D. et al. Reconstituting organ-level lung functions on a chip. Science328, 1662–1668 (2010). This article describes the design and assembly of a microfluidic system that recreates the alveolar-endothelial interface in lungs. ArticleCAS Google Scholar
Kim, H. J., Huh, D., Hamilton, G. & Ingber, D. E. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip12, 2165–2174 (2012). ArticleCAS Google Scholar
Toh, Y. C. et al. A microfluidic 3D hepatocyte chip for drug toxicity testing. Lab Chip9, 2026–2035 (2009). ArticleCAS Google Scholar
Crane, M. M., Chung, K., Stirman, J. & Lu, H. Microfluidics-enabled phenotyping, imaging, and screening of multicellular organisms. Lab Chip10, 1509–1517 (2010). ArticleCAS Google Scholar
George, S. et al. Use of a high-throughput screening approach coupled with in vivo zebrafish embryo screening to develop hazard ranking for engineered nanomaterials. ACS Nano5, 1805–1817 (2011). ArticleCAS Google Scholar
Shi, W., Wen, H., Lin, B. & Qin, J. Microfluidic platform for the study of Caenorhabditis elegans. Top. Curr. Chem.304, 323–338 (2011). ArticleCAS Google Scholar
Samara, C. et al. Large-scale in vivo femtosecond laser neurosurgery screen reveals small-molecule enhancer of regeneration. Proc. Natl Acad. Sci. USA107, 18342–18347 (2010). ArticleCAS Google Scholar
Dendukuri, D. & Doyle, P. S. The synthesis and assembly of polymeric microparticles using microfluidics. Adv. Mater.21, 4071–4086 (2009). ArticleCAS Google Scholar
Zhao, J. & Grant, S. F. Advances in whole genome sequencing technology. Curr. Pharm. Biotechnol.12, 293–305 (2011). ArticleCAS Google Scholar