Sulfated glycopeptide nanostructures for multipotent protein activation (original) (raw)
Xu, D. & Esko, J. D. Demystifying heparan sulfate-protein interactions. Annu. Rev. Biochem.83, 129–157 (2014). ArticleCAS Google Scholar
Edwards, I. J. Proteoglycans in prostate cancer. Nat. Rev. Urology9, 196–206 (2012). ArticleCAS Google Scholar
Hudak, J. E. & Bertozzi, C. R. Glycotherapy: new advances inspire a reemergence of glycans in medicine. Chem. Biol.21, 16–37 (2014). ArticleCAS Google Scholar
Bramono, D. S. et al. Bone marrow-derived heparan sulfate potentiates the osteogenic activity of bone morphogenetic protein-2 (BMP-2). Bone50, 954–964 (2012). ArticleCAS Google Scholar
Zhao, B. et al. Heparin potentiates the in vivo ectopic bone formation induced by bone morphogenetic protein-2. J. Biol. Chem. 281, 23246–23253 (2006). ArticleCAS Google Scholar
Sadir, R., Imberty, A., Baleux, F. & Lortat-Jacob, H. Heparan sulfate/heparin oligosaccharides protect stromal cell-derived factor-1 (SDF-1)/CXCL12 against proteolysis induced by CD26/dipeptidyl peptidase IV. J. Biol. Chem.279, 43854–43860 (2004). ArticleCAS Google Scholar
Lortat-Jacob, H., Baltzer, F. & Grimaud, J. A. Heparin decreases the blood clearance of interferon-γ and increases its activity by limiting the processing of its carboxyl-terminal sequence. J. Biol. Chem.271, 16139–16143 (1996). ArticleCAS Google Scholar
Capila, I. & Linhardt, R. J. Heparin-protein interactions. Angew. Chem. Int. Ed. 41, 390–412 (2002). ArticleCAS Google Scholar
Perrimon, N. & Bernfield, M. Specificities of heparan sulphate proteoglycans in developmental processes. Nature404, 725–728 (2000). ArticleCAS Google Scholar
Li, Y. C. et al. Interactions that influence the binding of synthetic heparan sulfate based disaccharides to fibroblast growth factor-2. ACS Chem. Biol. 9, 1712–1717 (2014). ArticleCAS Google Scholar
Ornitz, D. M. & Leder, P. Ligand specificity and heparin dependence of fibroblast growth factor receptors 1 and 3. J. Biol. Chem.267, 16305–16311 (1992). CAS Google Scholar
Murali, S. et al. Affinity-selected heparan sulfate for bone repair. Biomaterials34, 5594–5605 (2013). ArticleCAS Google Scholar
Lever, R. & Page, C. P. Novel drug development opportunities for heparin. Nat. Rev. Drug Discov.1, 140–148 (2002). ArticleCAS Google Scholar
Baskaran, S., Grande, D., Sun, X.-L., Yayon, A. & Chaikof, E. L. Glycosaminoglycan-mimetic biomaterials. 3. Glycopolymers prepared from alkene-derivatized mono- and disaccharide-based glycomonomers. Bioconjug. Chem.13, 1309–1313 (2002). ArticleCAS Google Scholar
Huang, M. L., Smith, R. A., Trieger, G. W. & Godula, K. Glycocalyx remodeling with proteoglycan mimetics promotes neural specification in embryonic stem cells. J. Am. Chem. Soc.136, 10565–10568 (2014). ArticleCAS Google Scholar
Tyler, P. C., Guimond, S. E., Turnbull, J. E. & Zubkova, O. V. Single-entity heparan sulfate glycomimetic clusters for therapeutic applications. Angew. Chem. Int. Ed. 54, 2718–2723 (2015). ArticleCAS Google Scholar
de Paz, J. L., Noti, C., Bohm, F., Werner, S. & Seeberger, P. H. Potentiation of fibroblast growth factor activity by synthetic heparin oligosaccharide glycodendrimers. Chem. Biol.14, 879–887 (2007). ArticleCAS Google Scholar
Hartgerink, J. D., Beniash, E. & Stupp, S. I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science294, 1684–1688 (2001). ArticleCAS Google Scholar
Webber, M. J., Appel, E. A., Meijer, E. W. & Langer, R. Supramolecular biomaterials. Nat. Mater.15, 13–26 (2015). Article Google Scholar
Kiyonaka, S. et al. Semi-wet peptide/protein array using supramolecular hydrogel. Nat. Mater. 3, 58–64 (2004). ArticleCAS Google Scholar
Müller, M. K. & Brunsveld, L. A supramolecular polymer as a self-assembling polyvalent scaffold. Angew. Chem. Int. Ed. 48, 2921–2924 (2009). Article Google Scholar
Ustun Yaylaci, S. et al. Supramolecular GAG-like self-assembled glycopeptide nanofibers induce chondrogenesis and cartilage regeneration. Biomacromolecules17, 679–689 (2016). ArticleCAS Google Scholar
Chabre, Y. M. & Roy, R. Multivalent glycoconjugate syntheses and applications using aromatic scaffolds. Chem. Soc. Rev. 42, 4657–4708 (2013). ArticleCAS Google Scholar
Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 41, 2596–2599 (2002). Google Scholar
Cui, H. et al. Spontaneous and X-ray-triggered crystallization at long range in self-assembling filament networks. Science327, 555–559 (2010). ArticleCAS Google Scholar
Ortony, J. H. et al. Internal dynamics of a supramolecular nanofibre. Nat. Mater. 13, 812–816 (2014). ArticleCAS Google Scholar
Newcomb, C. J. et al. Cell death versus cell survival instructed by supramolecular cohesion of nanostructures. Nat. Commun. 5, 3321 (2014). Article Google Scholar
Paine-Saunders, S., Viviano, B. L., Economides, A. N. & Saunders, S. Heparan sulfate proteoglycans retain Noggin at the cell surface—a potential mechanism for shaping bone morphogenetic protein gradients. J. Biol. Chem.277, 2089–2096 (2002). ArticleCAS Google Scholar
Silva, G. A. et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science303, 1352–1355 (2004). ArticleCAS Google Scholar
Tantakitti, F. et al. Energy landscapes and functions of supramolecular systems. Nat. Mater. 15, 469–476 (2016). ArticleCAS Google Scholar
Katagiri, T. et al. Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J. Cell Biol. 127, 1755–1766 (1994). ArticleCAS Google Scholar
Lee, S. S. et al. Gel scaffolds of BMP-2-binding peptide amphiphile nanofibers for spinal arthrodesis. Adv. Healthc. Mater. 4, 131–141 (2015). ArticleCAS Google Scholar
Van Teeffelen, J. W., Brands, J., Stroes, E. S. & & Vink, H. Endothelial glycocalyx: sweet shield of blood vessels. Trends Cardiovasc. Med. 17, 101–105 (2007). ArticleCAS Google Scholar
Fyrner, T. et al. Saccharide-functionalized alkanethiols for fouling-resistant self-assembled monolayers: synthesis, monolayer properties, and antifouling behavior. Langmuir27, 15034–15047 (2011). ArticleCAS Google Scholar
Bearinger, J. P. et al. Chemisorbed poly(propylene sulphide)-based copolymers resist biomolecular interactions. Nat. Mater. 2, 259–264 (2003). ArticleCAS Google Scholar
Ham, H. O., Park, S. H., Kurutz, J. W., Szleifer, I. G. & Messersmith, P. B. Antifouling glycocalyx-mimetic peptoids. J. Am. Chem. Soc.135, 13015–13022 (2013). ArticleCAS Google Scholar
Gandhi, N. S. & Mancera, R. L. The structure of glycosaminoglycans and their interactions with proteins. Chem. Biol. Drug Des.72, 455–482 (2008). ArticleCAS Google Scholar
Ruppert, R., Hoffmann, E. & Sebald, W. Human bone morphogenetic protein 2 contains a heparin-binding site which modifies its biological activity. Eur. J. Biochem.237, 295–302 (1996). ArticleCAS Google Scholar
Kuo, W. J., Digman, M. A. & Lander, A. D. Heparan sulfate acts as a bone morphogenetic protein coreceptor by facilitating ligand-induced receptor hetero-oligomerization. Mol. Biol. Cell21, 4028–4041 (2010). ArticleCAS Google Scholar
Groppe, J. et al. Structural basis of BMP signalling inhibition by the cystine knot protein Noggin. Nature420, 636–642 (2002). ArticleCAS Google Scholar
Bhandari, M. et al. The effects of standard and low molecular weight heparin on bone nodule formation in vitro. Thromb. Haemost. 80, 413–417 (1998). ArticleCAS Google Scholar
Yu, P. B. et al. BMP type I receptor inhibition reduces heterotopic ossification. Nat. Med. 14, 1363–1369 (2008). ArticleCAS Google Scholar
Schlessinger, J. et al. Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mole. Cell6, 743–750 (2000). ArticleCAS Google Scholar
Eming, S. A., Martin, P. & Tomic-Canic, M. Wound repair and regeneration: mechanisms, signaling, and translation. Sci. Transl. Med. 6, 265sr6 (2014). Article Google Scholar
Jacques, L. B. Heparin: an old drug with a new paradigm. Science206, 528–533 (1979). ArticleCAS Google Scholar
Petitou, M. & van Boeckel, C. A. A synthetic antithrombin III binding pentasaccharide is now a drug! What comes next? Angew. Chem. Int. Ed. 43, 3118–3133 (2004). ArticleCAS Google Scholar
Simmonds, M. C. et al. Safety and effectiveness of recombinant human bone morphogenetic protein-2 for spinal fusion. Ann. Intern. Med. 158, 877–889 (2013). Article Google Scholar
Tovar, J. D., Claussen, R. C. & Stupp, S. I. Probing the interior of peptide amphiphile supramolecular aggregates. J. Am. Chem. Soc.127, 7337–7345 (2005). ArticleCAS Google Scholar
Webber, M. J., Newcomb, C. J., Bitton, R. & Stupp, S. I. Switching of self-assembly in a peptide nanostructure with a specific enzyme. Soft Matter7, 9665–9672 (2011). ArticleCAS Google Scholar
Gottlieb, H. E., Kotlyar, V. & Nudelman, A. NMR chemical shifts of common laboratory solvents as trace impurities. J. Org. Chem.62, 7512–7515 (1997). ArticleCAS Google Scholar
Chen, B. et al. Carbohydrate rod conjugates: ternary rod−coil molecules forming complex liquid crystal structures. J. Am. Chem. Soc. 127, 16578–16591 (2005). ArticleCAS Google Scholar
Eklind, K., Gustafsson, R., Tiden, A. K., Norberg, T. & Aberg, P. M. Large-scale synthesis of a Lewis b tetrasaccharide derivative, its acrylamide copolymer, and related di- and trisaccharides for use in adhesion inhibition studies with Helicobacter pylori. J. Carbohyd. Chem.15, 1161–1178 (1996). ArticleCAS Google Scholar
Chernyak, A., Kononov, L. O. & Kochetkov, N. K. Synthesis of carbohydrate-amino acid conjugates related to the capsular antigen K54 from Escherichia coli O6:K54:H10 and artificial antigens therefrom. Carbohydr. Res.216, 381–398 (1992). Article Google Scholar