Analysis of synaptic vesicle endocytosis in synaptosomes by high-content screening (original) (raw)
Smith, S.M., Renden, R. & von Gersdorff, H. Synaptic vesicle endocytosis: fast and slow modes of membrane retrieval. Trends Neurosci.31, 559–568 (2008). PubMedPubMed CentralCAS Google Scholar
Newton, A.J., Kirchhausen, T. & Murthy, V.N. Inhibition of dynamin completely blocks compensatory synaptic vesicle endocytosis. Proc. Natl. Acad. Sci. USA103, 17955–17960 (2006). PubMedPubMed CentralCAS Google Scholar
Ceccarelli, B. & Hurlbut, W.P. Ca2+-dependent recycling of synaptic vesicles at the frog neuromuscular junction. J. Cell Biol.87, 297–303 (1980). PubMedCAS Google Scholar
Watanabe, O. & Meldolesi, J. The effects of alpha-latrotoxin of black widow spider venom on synaptosome ultrastructure. A morphometric analysis correlating its effects on transmitter release. J. Neurocytol.12, 517–531 (1983). PubMedCAS Google Scholar
Cousin, M.A. & Robinson, P.J. The dephosphins: dephosphorylation by calcineurin triggers synaptic vesicle endocytosis. Trends Neurosci.24, 659–665 (2001). PubMedCAS Google Scholar
Sudhof, T.C. The synaptic vesicle cycle. Annu. Rev. Neurosci.27, 509–547 (2004). PubMed Google Scholar
McMahon, H.T. & Boucrot, E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol.12, 517–533 (2011). PubMedCAS Google Scholar
Anggono, V. et al. Syndapin I is the phosphorylation-regulated dynamin I partner in synaptic vesicle endocytosis. Nat. Neurosci.9, 752–760 (2006). PubMedPubMed CentralCAS Google Scholar
von Kleist, L. et al. Essential role of the clathrin terminal domain in regulating coated pit dynamics revealed by small molecule inhibition. Cell146, 471–484 (2011). PubMedCAS Google Scholar
Hill, T.A. et al. Iminochromene inhibitors of dynamin I & II GTPase activity and endocytosis. J. Med. Chem.53, 4094–4102 (2010). PubMedCAS Google Scholar
Odell, L.R. et al. The pthaladyns: GTP competitive inhibitors of dynamin I and II GTPase derived from virtual screening. J. Med. Chem.53, 5267–5280 (2010). PubMedCAS Google Scholar
Quan, A. et al. MiTMAB is a surface-active dynamin inhibitor that blocks endocytosis mediated by dynamin I or dynamin II. Mol. Pharmacol.72, 1425–1439 (2007). PubMedCAS Google Scholar
Harper, C.B. et al. Dynamin inhibition blocks botulinum neurotoxin type-A endocytosis in neurons and delays botulism. J. Biol. Chem.286, 35966–35976 (2011). PubMedPubMed CentralCAS Google Scholar
Hill, T.A. et al. Inhibition of dynamin mediated endocytosis by the dynoles—synthesis and functional activity of a family of indoles. J. Med. Chem.52, 3762–3773 (2009). PubMedCAS Google Scholar
Hill, T.A. et al. Long chain amines and long chain ammonium salts as novel inhibitors of dynamin GTPase activity. Bioorg. Med. Chem. Lett.14, 3275–3278 (2004). PubMedCAS Google Scholar
Macia, E. et al. Dynasore, a cell-permeable inhibitor of dynamin. Dev. Cell10, 839–850 (2006). PubMedCAS Google Scholar
Bialer, M. & White, H.S. Key factors in the discovery and development of new antiepileptic drugs. Nat. Rev. Drug Discov.9, 68–82 (2010). PubMedCAS Google Scholar
Gehrig, J. et al. Automated high-throughput mapping of promoter-enhancer interactions in zebrafish embryos. Nat. Methods6, 911–916 (2009). PubMedCAS Google Scholar
Zhang, L. et al. Small molecule regulators of autophagy identified by an image-based high-throughput screen. Proc. Natl. Acad. Sci USA104, 19023–19028 (2007). PubMedPubMed CentralCAS Google Scholar
Gohil, V.M. et al. Nutrient-sensitized screening for drugs that shift energy metabolism from mitochondrial respiration to glycolysis. Nat. Biotechnol.28, 249–255 (2010). PubMedPubMed CentralCAS Google Scholar
Li, Z. et al. Synaptic vesicle recycling studied in transgenic mice expressing synaptopHluorin. Proc. Natl. Acad. Sci. USA102, 6131–6136 (2005). PubMedPubMed CentralCAS Google Scholar
Li, Z. & Murthy, V.N. Visualizing postendocytic traffic of synaptic vesicles at hippocampal synapses. Neuron31, 593–605 (2001). PubMedCAS Google Scholar
Zhang, Q., Li, Y. & Tsien, R.W. The dynamic control of kiss-and-run and vesicular reuse probed with single nanoparticles. Science323, 1448–1453 (2009). PubMedPubMed CentralCAS Google Scholar
Murthy, V.N. Optical detection of synaptic vesicle exocytosis and endocytosis. Curr. Opin. Neurobiol.9, 314–320 (1999). PubMedCAS Google Scholar
Hua, Y. et al. A readily retrievable pool of synaptic vesicles. Nat. Neurosci.14, 833–839 (2011). PubMedCAS Google Scholar
Sankaranarayanan, S., De Angelis, D., Rothman, J.E. & Ryan, T.A. The use of pHluorins for optical measurements of presynaptic activity. Biophys. J.79, 2199–2208 (2000). PubMedPubMed CentralCAS Google Scholar
Sun, J.Y. et al. Capacitance measurements at the Calyx of Held in the medial nucleus of the trapezoid body. J. Neurosci. Methods134, 121–131 (2004). PubMed Google Scholar
Betz, W.J. & Bewick, G.S. Optical analysis of synaptic vesicle recycling at the frog neuromuscular junction. Science255, 200–203 (1992). PubMedCAS Google Scholar
Ryan, T.A. et al. The kinetics of synaptic vesicle recycling measured at single presynaptic boutons. Neuron11, 713–724 (1993). PubMedCAS Google Scholar
Zhang, Q., Cao, Y.Q. & Tsien, R.W. Quantum dots provide an optical signal specific to full collapse fusion of synaptic vesicles. Proc. Natl. Acad. Sci. USA104, 17843–17848 (2007). PubMedPubMed CentralCAS Google Scholar
Clayton, E.L. & Cousin, M.A. Quantitative monitoring of activity-dependent bulk endocytosis of synaptic vesicle membrane by fluorescent dextran imaging. J. Neurosci. Methods185, 76–81 (2009). PubMedPubMed Central Google Scholar
Clayton, E.L. et al. The phospho-dependent dynamin-syndapin interaction triggers activity-dependent bulk endocytosis of synaptic vesicles. J. Neurosci.29, 7706–7717 (2009). PubMedPubMed CentralCAS Google Scholar
Cousin, M.A., Tan, T.C. & Robinson, P.J. Protein phosphorylation is required for endocytosis in nerve terminals. Potential role for the dephosphins dynamin I and synaptojanin, but not AP180 or amphiphysin. J. Neurochem.76, 105–116 (2001). PubMedCAS Google Scholar
Cousin, M.A. & Robinson, P.J. Two mechanisms of synaptic vesicle recycling in rat brain nerve terminals. J. Neurochem.75, 1645–1653 (2000). PubMedCAS Google Scholar
Tan, T.C. et al. Cdk5 is essential for synaptic vesicle endocytosis. Nat. Cell Biol.5, 701–710 (2003). PubMedCAS Google Scholar
Miesenbock, G., De Angelis, D.A. & Rothman, J.E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature394, 192–195 (1998). PubMedCAS Google Scholar
Granseth, B., Odermatt, B., Royle, S.J. & Lagnado, L. Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses. Neuron51, 773–786 (2006). PubMedCAS Google Scholar
Voglmaier, S.M. et al. Distinct endocytic pathways control the rate and extent of synaptic vesicle protein recycling. Neuron51, 71–84 (2006). PubMedCAS Google Scholar
Gray, E.G. & Whittaker, V.P. Isolation of nerve endings from brain: an electron microscopic study of the cell fragments derived by homogenization and centrifugation. J. Anat.96, 79–88 (1962). PubMedPubMed CentralCAS Google Scholar
De Robertis, E., Pellegrino de Iraldi, A., Rodriquez de Lores Arniaz, G. & Salganicoff, L. Cholinergic and noncholinergic nerve endings in rat brain. I. Isolation and subcellular distribution of acetylcholine and acetylcholinesterase. J. Neurochem.9, 23–35 (1962). PubMedCAS Google Scholar
Dunkley, P.R., Jarvie, P.A. & Robinson, P.J. A rapid Percoll gradient procedure for preparation of synaptosomes. Nat. Protoc.3, 1718–1728 (2008). PubMedCAS Google Scholar
Whittaker, V.P. Thirty years of synaptosome research. J. Neurocytol.22, 735–742 (1993). PubMedCAS Google Scholar
Erecinska, M., Nelson, D. & Silver, I.A. Metabolic and energetic properties of isolated nerve ending particles (synaptosomes). Biochim. Biophys. Acta1277, 13–34 (1996). PubMed Google Scholar
Nicholls, D.G. Bioenergetics and transmitter release in the isolated nerve terminal. Neurochem. Res.28, 1433–1441 (2003). PubMedCAS Google Scholar
Raiteri, L. & Raiteri, M. Synaptosomes still viable after 25 years of superfusion. Neurochem. Res.25, 1265–1274 (2000). PubMedCAS Google Scholar
Ghijsen, W.E., Leenders, A.G. & Lopes Da Silva, F.H. Regulation of vesicle traffic and neurotransmitter release in isolated nerve terminals. Neurochem. Res.28, 1443–1452 (2003). PubMedCAS Google Scholar
Nicholls, D.G., Rugolo, M., Scott, I.G. & Meldolesi, J. Alpha-latrotoxin of black widow spider venom depolarizes the plasma membrane, induces massive calcium influx, and stimulates transmitter release in guinea pig brain synaptosomes. Proc. Natl. Acad. Sci. USA79, 7924–7928 (1982). PubMedPubMed CentralCAS Google Scholar
Scott, I.D. & Nicholls, D.G. Energy transduction in intact synaptosomes. Influence of plasma-membrane depolarization on the respiration and membrane potential of internal mitochondria determined in situ. Biochem. J.186, 21–33 (1980). PubMedPubMed CentralCAS Google Scholar
Tibbs, G.R., Dolly, J.O. & Nicholls, D.G. Evidence for the induction of repetitive action potentials in synaptosomes by K+-channel inhibitors: an analysis of plasma membrane ion fluxes. J. Neurochem.67, 389–397 (1996). PubMedCAS Google Scholar
Ramos, S. et al. Effect of tetanus toxin on the accumulation of the permeant lipophilic cation tetraphenylphosphonium by guinea pig brain synaptosomes. Proc. Natl. Acad. Sci. USA76, 4783–4787 (1979). PubMedPubMed CentralCAS Google Scholar
Campbell, C.W. The Na+, K+, Cl− contents and derived membrane potentials of presynaptic nerve endings in vitro. Brain Res.101, 594–599 (1976). PubMedCAS Google Scholar
Begley, J.G. et al. Cryopreservation of rat cortical synaptosomes and analysis of glucose and glutamate transporter activities, and mitochondrial function. Brain Res. Brain Res. Protoc.3, 76–82 (1998). PubMedCAS Google Scholar
Nichols, R.A., Wu, W.C.S., Haycock, J.W. & Greengard, P. Introduction of impermeant molecules into synaptosomes using freeze/thaw permeabilization. J. Neurochem.52, 521–529 (1989). PubMedCAS Google Scholar
Cousin, M.A. & Robinson, P.J. Ba2+ does not support synaptic vesicle retrieval in rat isolated presynaptic nerve terminals. Neurosci. Lett.253, 1–4 (1998). PubMedCAS Google Scholar
Cousin, M.A. & Robinson, P.J. Ca2+ inhibition of dynamin arrests synaptic vesicle recycling at the active zone. J. Neurosci.20, 949–957 (2000). PubMedPubMed CentralCAS Google Scholar
Choi, S.W., Gerencser, A.A. & Nicholls, D.G. Bioenergetic analysis of isolated cerebrocortical nerve terminals on a microgram scale: spare respiratory capacity and stochastic mitochondrial failure. J. Neurochem.109, 1179–1191 (2009). PubMedPubMed CentralCAS Google Scholar
Harata, N., Ryan, T.A., Smith, S.J., Buchanan, J. & Tsien, R.W. Visualizing recycling synaptic vesicles in hippocampal neurons by FM 1-43 photoconversion. Proc. Natl. Acad. Sci. USA98, 12748–12753 (2001). PubMedPubMed CentralCAS Google Scholar
Ryan, T.A., Reuter, H. & Smith, S.J. Optical detection of a quantal presynaptic membrane turnover. Nature388, 478–482 (1997). PubMedCAS Google Scholar
Anggono, V., Cousin, M.A. & Robinson, P.J. Styryl dye-based synaptic vesicle recycling assay in cultured cerebellar granule neurons. Methods Mol. Biol.457, 333–345 (2008). PubMedCAS Google Scholar
Cousin, M.A. & Nicholls, D.G. Synaptic vesicle recycling in cultured cerebellar granule cells: role of vesicular acidification and refilling. J. Neurochem.69, 1927–1935 (1997). PubMedCAS Google Scholar
Betz, W.J., Ridge, R.M. & Bewick, G.S. Comparison of FM1-43 staining patterns and electrophysiological measures of transmitter release at the frog neuromuscular junction. J. Physiol.87, 193–202 (1993). CAS Google Scholar
Betz, W.J. & Bewick, G.S. Optical monitoring of transmitter release and synaptic vesicle recycling at the frog neuromuscular junction. J. Physiol.460, 287–309 (1993). PubMedPubMed CentralCAS Google Scholar
Rizzoli, S.O., Richards, D.A. & Betz, W.J. Monitoring synaptic vesicle recycling in frog motor nerve terminals with FM dyes. J. Neurocytol.32, 539–549 (2003). PubMedCAS Google Scholar
Kay, A.R. et al. Imaging synaptic activity in intact brain and slices with FM1-43 in C. elegans, lamprey, and rat. Neuron24, 809–817 (1999). PubMedCAS Google Scholar
Sun, L., Shukair, S., Naik, T.J., Moazed, F. & Ardehali, H. Glucose phosphorylation and mitochondrial binding are required for the protective effects of hexokinases I and II. Mol. Cell Biol.28, 1007–1017 (2008). PubMedCAS Google Scholar
Hill, T.A. et al. Heterocyclic substituted cantharidin and norcantharidin analogues: synthesis, protein phosphatase (1 and 2A) inhibition, and anti-cancer activity. Bioorg. Med. Chem. Lett.17, 3392–3397 (2007). PubMedCAS Google Scholar
Sever, S., Muhlberg, A.B. & Schmid, S.L. Impairment of dynamin's GAP domain stimulates receptor-mediated endocytosis. Nature398, 481–486 (1999). PubMedCAS Google Scholar
Morgan, J.R., Prasad, K., Hao, W., Augustine, G.J. & Lafer, E.M. A conserved clathrin assembly motif essential for synaptic vesicle endocytosis. J. Neurosci.20, 8667–8676 (2000). PubMedPubMed CentralCAS Google Scholar
Gleitz, J., Beile, A., Wilffert, B. & Tegtmeier, F. Cryopreservation of freshly isolated synaptosomes prepared from the cerebral cortex of rats. J. Neurosci. Methods47, 191–197 (1993). PubMedCAS Google Scholar
Dunkley, P.R. et al. A rapid Percoll gradient procedure for isolation of synaptosomes directly from an S1 fraction: homogeneity and morphology of subcellular fractions. Brain Res.441, 59–71 (1988). PubMedCAS Google Scholar
Harrison, S.M., Jarvie, P.E. & Dunkley, P.R. A rapid Percoll gradient procedure for isolation of synaptosomes directly from an S1 fraction: viability of subcellular fractions. Brain Res.441, 72–80 (1988). PubMedCAS Google Scholar
Galbraith, S., Daniel, J.A. & Vissel, B. A study of clustered data and approaches to its analysis. J. Neurosci.30, 10601–10608 (2010). PubMedPubMed CentralCAS Google Scholar
Betz, W.J., Mao, F. & Bewick, G.S. Activity-dependent fluorescent staining and destaining of living vertebrate motor nerve terminals. J. Neurosci.12, 363–375 (1992). PubMedPubMed CentralCAS Google Scholar
Virmani, T., Atasoy, D. & Kavalali, E.T. Synaptic vesicle recycling adapts to chronic changes in activity. J. Neurosci.26, 2197–2206 (2006). PubMedPubMed CentralCAS Google Scholar
Saviane, C. & Silver, R.A. Fast vesicle reloading and a large pool sustain high bandwidth transmission at a central synapse. Nature439, 983–987 (2006). PubMedCAS Google Scholar
Daniel, J.A., Galbraith, S., Iacovitti, L., Abdipranoto, A. & Vissel, B. Functional heterogeneity at dopamine release sites. J. Neurosci.29, 14670–14680.