Stem-cell hierarchy in skin cancer (original) (raw)
Donjacour, A. A. & Cunha, G. R. Stromal regulation of epithelial function. Cancer Treat. Res.53, 335–364 (1991). ArticleCASPubMed Google Scholar
Paus, R., Peters, E. M., Eichmuller, S. & Botchkarev V, A. Neural mechanisms of hair growth control. J. Invest. Dermatol. Symp. Proc.2, 61–68 (1997). ArticleCAS Google Scholar
Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell7, 57–70 (2000). Article Google Scholar
Sternlicht, M. D. et al. The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell98, 137–146 (1999). An important demonstration of the crucial role of the stromal environment in the malignant transformation of cancer cells. ArticleCASPubMedPubMed Central Google Scholar
Muller, A. et al. Involvement of chemokine receptors in breast cancer metastasis. Nature410, 50–56 (2001). Provides evidence that humoral factors produced at distant sites can influence metastatic dissemination of tumour cells. ArticleCASPubMed Google Scholar
Szabowski, A. et al. c-Jun and JunB antagonistically control cytokine-regulated mesenchymal-epidermal interaction in skin. Cell103, 745–755 (2000). ArticleCASPubMed Google Scholar
Olumi, A. F. et al. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res.59, 5002–5011 (1999). CASPubMed Google Scholar
Kurose, K. et al. Frequent somatic mutations in PTEN and TP53 are mutually exclusive in the stroma of breast carcinomas. Nature Genet.32, 355–357 (2002). ArticleCASPubMed Google Scholar
Sell, S. & Pierce, G. B. Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers. Lab. Invest.70, 6–22 (1994). CASPubMed Google Scholar
Yuspa, S. H. et al. Regulation of hair follicle development: an in vitro model for hair follicle invasion of dermis and associated connective tissue remodeling. J Invest. Dermatol.101 (Suppl. 1), 27S–32S (1993). ArticleCASPubMed Google Scholar
Gilbert, C. W. & Lajtha, L. G. in Cellular Radiation Biology 118–154 (Williams and Wilkins, Baltimore, Maryland, USA, 1965). Google Scholar
Mackenzie, I. C. Relationship between mitosis and the ordered structure of the stratum corneum in mouse epidermis. Nature226, 653–655 (1970). ArticleCASPubMed Google Scholar
Hume, W. J. Keratinocyte proliferative hierarchies confer protective mechanisms in surface epithelia. Br. J. Dermatol.112, 493–502 (1985). ArticleCASPubMed Google Scholar
Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature414, 105–111 (2001). ArticleCASPubMed Google Scholar
Spradling, A., Drummond-Barbosa, D. & Kai, T. Stem cells find their niche. Nature414, 98–104 (2001). ArticleCASPubMed Google Scholar
Dvorak, H. F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med.315, 1650–1659 (1986). ArticleCASPubMed Google Scholar
Hamburger, A. W. & Salmon, S. E. Primary bioassay of human tumor stem cells. Science197, 461–463 (1977). ArticleCASPubMed Google Scholar
Bonnet, D. & Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Med.3, 730–737 (1997). ArticleCASPubMed Google Scholar
Cobaleda, C. et al. A primitive hematopoietic cell is the target for the leukemic transformation in human philadelphia-positive acute lymphoblastic leukemia. Blood95, 1007–1013 (2000). ArticleCASPubMed Google Scholar
Park, C. H., Bergsagel, D. E. & McCulloch, E. A. Mouse myeloma tumor stem cells: a primary cell culture assay. J. Natl Cancer Inst.46, 411–422 (1971). CASPubMed Google Scholar
Greaves, M. F. Differentiation-linked leukemogenesis in lymphocytes. Science234, 697–704 (1986). ArticleCASPubMed Google Scholar
Fuchs, E. & Raghavan, S. Getting under the skin of epidermal morphogenesis. . Nature Rev. Genet.3, 199–209 (2002). ArticleCASPubMed Google Scholar
Niemann, C. & Watt, F. M. Designer skin: lineage commitment in postnatal epidermis. Trends Cell Biol.12, 185–192 (2002). ArticleCASPubMed Google Scholar
Potten, C. S. & Booth, C. Keratinocyte stem cells: a commentary. J. Invest. Dermatol.119, 888–899 (2002). ArticleCASPubMed Google Scholar
Kamimura, J., Lee, D., Baden, H. P., Brissette, J. & Dotto, G. P. Primary mouse keratinocyte cultures contain hair follicle progenitor cells with multiple differentiation potential. J. Invest. Dermatol.109, 534–540 (1997). ArticleCASPubMed Google Scholar
Ghazizadeh, S. & Taichman, L. B. Multiple classes of stem cells in cutaneous epithelium: a lineage analysis of adult mouse skin. EMBO J.20, 1215–1222 (2001). ArticleCASPubMedPubMed Central Google Scholar
Cotsarelis, G., Sun, T. T. & Lavker, R. M. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell61, 329–337 (1990). Article Google Scholar
Taylor, G., Lehrer, M. S., Jensen, P. J., Sun, T. T. & Lavker, R. M. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell102, 451–461 (2000). ArticleCASPubMed Google Scholar
Rochat, A., Kobayashi, K. & Barrandon, Y. Location of stem cells of human hair follicles by clonal analysis. Cell76, 1063–1073 (1994). ArticleCASPubMed Google Scholar
Potten, C. S. Cell replacement in epidermis (keratopoiesis) via discrete units of proliferation. Int. Rev. Cytol.69, 271–318 (1981). ArticleCASPubMed Google Scholar
Klein-Szanto, A. J., Ruggeri, B., Bianchi, A. & Conti, C. J. Cellular and molecular changes during mouse skin tumor progression. Recent Results Cancer Res.128, 193–204 (1993). ArticleCASPubMed Google Scholar
Frame, S. & Balmain, A. Integration of positive and negative growth signals during Ras pathway activation in vivo. Curr. Opin. Genet. Dev.10, 106–113 (2000). ArticleCASPubMed Google Scholar
Hunter, J. A., Savin J. A. & Dahl M V. Clinical Dermatology (Blackwell Science, Oxford, 1995). Google Scholar
Barrandon, Y., Morgan, J. R., Mulligan, R. C. & Green, H. Restoration of growth potential in paraclones of human keratinocytes by a viral oncogene. Proc. Natl Acad. Sci. USA86, 4102–4106 (1989). ArticleCASPubMedPubMed Central Google Scholar
Pelengaris, S., Littlewood, T., Khan, M., Elia, G. & Evan, G. Reversible activation of c-Myc in skin: induction of a complex neoplastic phenotype by a single oncogenic lesion. Mol. Cell.3, 565–577 (1999). ArticleCASPubMed Google Scholar
Bailleul, B. et al. Skin hyperkeratosis and papilloma formation in transgenic mice expressing a ras oncogene from a suprabasal keratin promoter. Cell62, 697–708 (1990). See reference 39. ArticleCASPubMed Google Scholar
Greenhalgh, D. A. et al. Induction of epidermal hyperplasia, hyperkeratosis, and papillomas in transgenic mice by a targeted v-Ha-ras oncogene. Mol. Carcinog.7, 99–110 (1993). ArticleCASPubMed Google Scholar
Brown, K., Strathdee, D., Bryson, S., Lambie, W. & Balmain, A. The malignant capacity of skin tumours induced by expression of a mutant H-ras transgene depends on the cell type targeted. Curr. Biol.8, 516–524 (1998). This article (together with reference 37) shows that benign tumours that are at risk of malignant conversion are primarily derived from cells located within the hair follicle, whereas papillomas with very low malignant potential can arise from the interfollicular or suprabasal cells. Together, these papers show that the nature of the cell in which tumour initiation occurs is one of the main determinants of malignant potential. ArticleCASPubMed Google Scholar
Wang, X. J., Liefer, K. M., Greenhalgh, D. A. & Roop, D. R. 12-O-tetradecanoylphorbol-13-acetate promotion of transgenic mouse epidermis coexpressing transforming growth factor-alpha and v-fos: acceleration of autonomous papilloma formation and malignant conversion via c-Ha-ras activation. Mol. Carcinog.26, 305–311 (1999). ArticleCASPubMed Google Scholar
Balmain, A., Ramsden, M., Bowden, G. T. & Smith, J. Activation of the mouse cellular Harvey-ras gene in chemically induced benign skin papillomas. Nature307, 658–660 (1984). ArticleCASPubMed Google Scholar
Quintanilla, M., Brown, K., Ramsden, M. & Balmain, A. Carcinogen-specific mutation and amplification of Ha-ras during mouse skin carcinogenesis. Nature322, 78–80 (1986). ArticleCASPubMed Google Scholar
Hennings, H., Shores, R., Mitchell, P., Spangler, E. F. & Yuspa, S. H. Induction of papillomas with a high probability of conversion to malignancy. Carcinogenesis6, 1607–1610 (1985). ArticleCASPubMed Google Scholar
Tennenbaum, T. et al. The suprabasal expression of α6β4 integrin is associated with a high risk for malignant progression in mouse skin carcinogenesis Cancer Res.53, 4803–4810 (1993). CASPubMed Google Scholar
Cano, A. et al. Expression pattern of the cell adhesion molecules. E-cadherin, P-cadherin and alpha-6 beta-4 intergrins is altered in pre-malignant skin tumors of p53-deficient mice. Int. J. Cancer65, 254–262 (1996). ArticleCASPubMed Google Scholar
Argyris, T. S. Promotion of epidermal carcinogenesis by repeated damage to mouse skin. Am. J. Ind. Med.8, 329–337 (1985). ArticleCASPubMed Google Scholar
Morris, R. J., Tryson, K. A. & Wu, K. Q. Evidence that the epidermal targets of carcinogen action are found in the interfollicular epidermis of infundibulum as well as in the hair follicles. Cancer Res.15, 226–229 (2000). Google Scholar
Reynolds, A. J. & Jahoda, C. A. Cultured dermal papilla cells induce follicle formation and hair growth by transdifferentiation of an adult epidermis. Development115, 587–593 (1992). ArticleCASPubMed Google Scholar
Bachoo, R. M. et al. Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell1, 269–277 (2002). ArticleCASPubMed Google Scholar
Levy, L., Broad, S., Diekmann, D., Evans, R. D. & Watt, F. M. Beta1 integrins regulate keratinocyte adhesion and differentiation by distinct mechanisms. Mol. Biol. Cell.11, 453–466 (2000). ArticleCASPubMedPubMed Central Google Scholar
Li, A., Simmons, P. J. & Kaur, P. Identification and isolation of candidate human keratinocyte stem cells based on cell surface phenotype. Proc. Natl Acad. Sci. USA95, 3902–3907 (1998). ArticleCASPubMedPubMed Central Google Scholar
Tani, H., Morris, R. J. & Kaur, P. Enrichment for murine keratinocyte stem cells based on cell surface phenotype. Proc. Natl Acad. Sci. USA97, 10960–10965 (2000). ArticleCASPubMedPubMed Central Google Scholar
Van Duuren, B. L., Sivak, A., Katz, C., Seidman, I. & Melchionne, S. The effect of ageing and interval between primary and secondary treatment in two-stage carcinogenesis on mouse skin. Cancer Res.35, 502–505 (1975). Classic work in which the authors showed that the initiating effect of the carcinogen persists even when the interval between initiation and promotion is more than 1 year. CASPubMed Google Scholar
Jonason, A. S. et al. Frequent clones of p53-mutated keratinocytes in normal human skin. Proc. Natl Acad. Sci. USA93, 14025–14029 (1996). ArticleCASPubMedPubMed Central Google Scholar
Rehman, I. et al. Frequent codon 12 Ki-ras mutations in mouse skin tumors initiated by N-methyl-N′-nitro-N-nitrosoguanidine and promoted by mezerein. Mol. Carcinog.27, 298–307 (2000). ArticleCASPubMed Google Scholar
Megosh, L., Halpern, M., Farkash, E. & O'Brien, T. G. Analysis of ras gene mutational spectra in epidermal papillomas from K6/ODC transgenic mice. Mol. Carcinog.22, 145–149 (1998). ArticleCASPubMed Google Scholar
Aydinlik, H., Nguyen, T. D., Moennikes, O., Buchmann, A. & Schwarz, M. Selective pressure during tumor promotion by phenobarbital leads to clonal outgrowth of beta-catenin-mutated mouse liver tumors. Oncogene20, 7812–7816 (2001). ArticleCASPubMed Google Scholar
Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell61, 759–767 (1990). ArticleCASPubMed Google Scholar
Yamasaki, H. et al. Comparative effects of a complete tumor promoter, TPA, and a second-stage tumor promoter, RPA, on intercellular communication, cell differentiation and cell transformation. Carcinogenesis6, 1173–1179 (1985). ArticleCASPubMed Google Scholar
Mackenzie, I. C. & Bickenbach, J. R. Label-retaining keratinocytes and Langerhans cells in mouse epithelia. Cell Tissue Res.242, 551–556 (1985). ArticleCASPubMed Google Scholar
Gat, U., DasGupta, R., Degenstein, L. & Fuchs, E. De Novo hair follicle morphogenesis and hair tumors in mice expressing a truncated beta-catenin in skin. Cell95, 605–614 (1998). Shows that the expression of β-catenin in the basal layer induces hair-follicle formation and specific hair tumours. Conversely, deletion of β-catenin (reference 74) in the basal layer induces the targeted cells to adopt an epidermal cell fate. ArticleCASPubMed Google Scholar
Niemann, C., Owens, D. M., Hulsken, J., Birchmeier, W. & Watt, F. M. Expression of DeltaNLef1 in mouse epidermis results in differentiation of hair follicles into squamous epidermal cysts and formation of skin tumours. Development129, 95–109 (2002). ArticleCASPubMed Google Scholar
Merrill, B. J., Gat, U., DasGupta, R. & Fuchs, E. Tcf3 and Lef1 regulate lineage differentiation of multipotent stem cells in skin. Genes Dev.15, 1688–1705 (2001). ArticleCASPubMedPubMed Central Google Scholar
Grachtchouk, M. et al. Basal cell carcinomas in mice overexpressing Gli2 in skin. Nature Genet.24, 216–217 (2000). ArticleCASPubMed Google Scholar
Nilsson, M. et al. Induction of basal cell carcinomas and trichoepitheliomas in mice overexpressing GLI-1. Proc. Natl Acad. Sci. USA97, 3438–3443 (2000). ArticleCASPubMedPubMed Central Google Scholar
van Hogerlinden, M., Rozell, B. L., Ahrlund-Richter, L. & Toftgard, R. Squamous cell carcinomas and increased apoptosis in skin with inhibited Rel/nuclear factor-kappaB signaling. Cancer Res.59, 3299–3303 (1999). CASPubMed Google Scholar
Seitz, C. S., Lin, Q., Deng, H. & Khavari, P. A. Alterations in NF-kappaB function in transgenic epithelial tissue demonstrate a growth inhibitory role for NF-kappaB. Proc. Natl Acad. Sci. USA95, 2307–2312 (1998). ArticleCASPubMedPubMed Central Google Scholar
Dajee, M. et al. NF-kappaB blockade and oncogenic Ras trigger invasive human epidermal neoplasia. Nature421, 639–643 (2003). ArticleCASPubMed Google Scholar
Bonifas, J. M. et al. Activation of expression of hedgehog target genes in basal cell carcinomas. J. Invest. Dermatol.116, 739–742 (2001). ArticleCASPubMed Google Scholar
Chan, E. F., Gat, U., McNiff, J. M. & Fuchs, E. A common human skin tumour is caused by activating mutations in beta-catenin. Nature Genet.21, 410–413 (1999). ArticleCASPubMed Google Scholar
Huelsken, J., Vogel, R., Erdmann, B., Cotsarelis, G. & Birchmeier, W. beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell105, 533–545 (2001). See reference 63. ArticleCASPubMed Google Scholar
Vassar, R., Rosenberg, M., Ross, S., Tyner, A. & Fuchs, E. Tissue-specific and differentiation-specific expression of a human K14 keratin gene in transgenic mice. Proc. Natl Acad. Sci. USA86, 1563–1567 (1989). ArticleCASPubMedPubMed Central Google Scholar
Byrne, C. & Fuchs, E. Probing keratinocyte and differentiation specificity of the human K5 promoter in vitro and in transgenic mice. Mol. Cell. Biol.13, 3176–3190 (1993). CASPubMedPubMed Central Google Scholar
Johnson, L. et al. Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature410, 1111–1116 (2001). ArticleCASPubMed Google Scholar
Potten, C. S. The epidermal proliferative unit: the possible role of the central basal cell. Cell Tissue Kinet.7, 77–88 (1974). CASPubMed Google Scholar
Furstenberger, G., Gross, M., Schweizer, J., Vogt, I. & Marks, F. Isolation, characterization and in vitro cultivation of subfractions of neonatal mouse keratinocytes: effects of phorbol esters. Carcinogenesis7, 1745–1753 (1986). ArticleCASPubMed Google Scholar
Yuspa, S. H., Ben, T., Hennings, H. & Lichti, U. Divergent responses in epidermal basal cells exposed to the tumor promoter 12-O-tetradecanoylphorbol-13-acetate. Cancer Res.42, 2344–2349 (1982). CASPubMed Google Scholar
Parkinson, E. K., Grabham, P. & Emmerson, A. A subpopulation of cultured human keratinocytes which is resistant to the induction of terminal differentiation-related changes by phorbol, 12-myristate,13-acetate: evidence for an increase in the resistant population following transformation. Carcinogenesis4, 857–861 (1983). ArticleCASPubMed Google Scholar
Morris, R. J., Fischer, S. M. & Slaga, T. J. Evidence that the centrally and peripherally located cells in the murine epidermal proliferative unit are two distinct cell populations. J. Invest. Dermatol.84, 277–281 (1985). ArticleCASPubMed Google Scholar
Waikel, R. L., Kawachi, Y., Waikel, P. A., Wang, X. J. & Roop, D. R. Deregulated expression of c-Myc depletes epidermal stem cells. Nature Genet.28, 165–168 (2001). Shows that constitutive expression of c-Myc in basal epidermal cells causes depletion of the stem-cell pool, indicating a role for c-Myc as a regulator of epidermal stem-cell maintenance. See also reference 86. ArticleCASPubMed Google Scholar
Arnold, I. & Watt, F. M. c-Myc activation in transgenic mouse epidermis results in mobilization of stem cells and differentiation of their progeny. Curr. Biol.11, 558–568 (2001). See reference 85. ArticleCASPubMed Google Scholar
Frye, M., Gardner, C., Li, E. R., Arnold, I. & Watt, F. M. Evidence that c-Myc activation depletes the epidermal stem cell compartment by modulating adhesive interactions with the local microenvironment. Development130, 2793–2808 (2003). ArticleCASPubMed Google Scholar
Fidler, I. J. The biology of human cancer metastasis. 7th Jan Waldenstrom Lecture. Acta Oncol.30, 668–675 (1991). ArticleCASPubMed Google Scholar
Blau, H. M., Brazelton, T. R. & Weimann, J. M. The evolving concept of a stem cell: entity or function? Cell105, 829–841 (2001). ArticleCASPubMed Google Scholar
Gimbrone, M. A. Jr, Cotran, R. S., Leapman, S. B. & Folkman, J. Tumor growth and neovascularization: an experimental model using the rabbit cornea. J. Natl Cancer Inst.52, 413–427 (1974). ArticlePubMed Google Scholar
Naumov, G. N., MacDonald, I. C., Chambers, A. F. & Groom, A. C. Solitary cancer cells as a possible source of tumour dormancy? Semin. Cancer Biol.11, 271–276 (2001). ArticleCASPubMed Google Scholar
Holyoake, T. L. et al. Primitive quiescent leukemic cells from patients with chronic myeloid leukemia spontaneously initiate factor-independent growth in vitro in association with up-regulation of expression of interleukin-3. Blood97, 720–728 (2001). ArticleCASPubMed Google Scholar
van Rhee, F. et al. Detection of residual leukaemia more than 10 years after allogeneic bone marrow transplantation for chronic myelogenous leukaemia. Bone Marrow Transplant.14, 609–612 (1994). CASPubMed Google Scholar
Yong, A. S. & Goldman, J. M. Relapse of chronic myeloid leukaemia 14 years after allogeneic bone marrow transplantation. Bone Marrow Transplant.23, 827–828 (1999). ArticleCASPubMed Google Scholar
Callaway, M. P. & Briggs, J. C. The incidence of later recurrence (greater than 10 years): an analysis of 536 consecutive cases of cutaneous melanoma. Br. J. Plast. Surg.42, 46–49 (1989). ArticleCASPubMed Google Scholar
van de Vijver, M. J. et al. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med.347, 1999–2009 (2002). ArticleCASPubMed Google Scholar
Ramaswamy, S., Ross, K. N., Lander, E. S. & Golub, T. R. A molecular signature of metastasis in primary solid tumors. Nature Genet.33, 49–54 (2003). ArticleCASPubMed Google Scholar
Bruserud, O. & Gjertsen, B. T. New strategies for the treatment of acute myelogenous leukemia: differentiation induction — present use and future possibilities. Stem Cells18, 57–65 (2000). Google Scholar
Demetri, G. D. et al. Induction of solid tumor differentiation by the peroxisome proliferator-activated receptor–gamma ligand troglitazone in patients with liposarcoma. Proc. Natl Acad. Sci. USA96, 3951–3956 (1999). ArticleCASPubMedPubMed Central Google Scholar