Mechanisms of BCR–ABL in the pathogenesis of chronic myelogenous leukaemia (original) (raw)
Kurzrock, R., Gutterman, J. & Talpaz, M. The molecular genetics of Philadelphia chromosome-positive leukemias. N. Engl. J. Med.319, 990–998 (1988). ArticleCASPubMed Google Scholar
Goldman, J. M. & Druker, B. J. Chronic myeloid leukemia: current treatment options. Blood98, 2039–2042 (2001). ArticleCASPubMed Google Scholar
Deininger, M., Buchdunger, E. & Druker, B. J. The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 23 Dec 2004 (10.1182/blood-2004-08-3097).
Druker, B. J. et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr–Abl positive cells. Nature Med.2, 561–566 (1996). ArticleCASPubMed Google Scholar
Deininger, M. W., Goldman, J. M., Lydon, N. & Melo, J. V. The tyrosine kinase inhibitor CGP57148B selectively inhibits the growth of BCR–ABL-positive cells. Blood90, 3691–3698 (1997). CASPubMed Google Scholar
Deininger, M. W. et al. BCR–ABL tyrosine kinase activity regulates the expression of multiple genes implicated in the pathogenesis of chronic myeloid leukemia. Cancer Res.60, 2049–2055 (2000). CASPubMed Google Scholar
le Coutre, P. et al. In vivo eradication of human BCR/ABL-positive leukemia cells with an ABL kinase inhibitor. J. Natl Cancer Inst.91, 163–168 (1999). ArticleCASPubMed Google Scholar
Druker, B. J., O'Brien, S. G., Cortes, J. & Radich, J. Chronic myelogenous leukemia. Hematology (Am. Soc. Hematol. Educ. Program) 111–135 (2002).
Stentoft, J. et al. Kinetics of BCR–ABL fusion transcript levels in chronic myeloid leukemia patients treated with STI571 measured by quantitative real-time polymerase chain reaction. Eur. J. Haematol.67, 302–308 (2001). ArticleCASPubMed Google Scholar
Bhatia, R. et al. Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood101, 4701–4707 (2003). ArticleCASPubMed Google Scholar
Lowenberg, B. Minimal residual disease in chronic myeloid leukemia. N. Engl. J. Med.349, 1399–1401 (2003). ArticlePubMed Google Scholar
Gorre, M. E. & Sawyers, C. L. Molecular mechanisms of resistance to STI571 in chronic myeloid leukemia. Curr. Opin. Hematol.9, 303–307 (2002). A comprehensive review on the molecular mechanisms of imatinib resistance in CML. ArticlePubMed Google Scholar
Gorre, M. E. et al. Clinical resistance to STI-571 cancer therapy caused by BCR_–_ABL gene mutation or amplification. Science293, 876–880 (2001). ArticleCASPubMed Google Scholar
Weisberg, E. & Griffin, J. D. Resistance to imatinib (Glivec): update on clinical mechanisms. Drug Resist. Updat.6, 231–238 (2003). ArticleCASPubMed Google Scholar
Woodring, P. J., Hunter, T. & Wang, J. Y. Regulation of F-actin-dependent processes by the Abl family of tyrosine kinases. J. Cell Sci.116, 2613–2626 (2003). ArticleCASPubMed Google Scholar
Hernandez, S. E., Krishnaswami, M., Miller, A. L. & Koleske, A. J. How do Abl family kinases regulate cell shape and movement? Trends Cell Biol.14, 36–44 (2004). ArticleCASPubMed Google Scholar
Schwartzberg, P. L. et al. Mice homozygous for the ablm1 mutation show poor viaility and depletion of selected B and T cell populations. Cell65, 1165–1175 (1991). ArticleCASPubMed Google Scholar
Tybulewicz, V. L. J., Crawford, C. E., Jackson, P. K., Bronson, R. T. & Mulligan, R. C. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell65, 1153–1163 (1991). ArticleCASPubMed Google Scholar
Koleske, A. J. et al. Essential roles for the Abl and Arg tyrosine kinases in neurulation. Neuron21, 1259–1272 (1998). ArticleCASPubMed Google Scholar
Voncken, J. W. et al. Increased neutrophil respiratory burst in bcr-null mutants. Cell80, 719–728 (1995). ArticleCASPubMed Google Scholar
Ren, R. The molecular mechanism of chronic myelogenous leukemia and its therapeutic implications: studies in a murine model. Oncogene21, 8629–8642 (2002). ArticleCASPubMed Google Scholar
Ramaraj, P. et al. Effect of mutational inactivation of tyrosine kinase activity on BCR/ABL-induced abnormalities in cell growth and adhesion in human hematopoietic progenitors. Cancer Res.64, 5322–5331 (2004). ArticleCASPubMed Google Scholar
Zhao, R. C., Jiang, Y. & Verfaillie, C. M. A model of human p210(bcr/ABL)-mediated chronic myelogenous leukemia by transduction of primary normal human CD34+ cells with a BCR/ABL-containing retroviral vector. Blood97, 2406–2412 (2001). ArticleCASPubMed Google Scholar
Daley, G. Q., Van Etten, R. A. & Baltimore, D. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science247, 824–830 (1990). ArticleCASPubMed Google Scholar
Kelliher, M. A., McLaughlin, J., Witte, O. N. & Rosenberg, N. Induction of a chronic myelogenous leukemia-like syndrome in mice with v-abl and BCR/ABL. Proc. Natl Acad. Sci. USA87, 6649–6653 (1990). ArticleCASPubMedPubMed Central Google Scholar
Elefanty, A. G., Hariharan, I. K. & Cory, S. bcr–abl, the hallmark of chronic myeloid leukaemia in man, induces multiple haemopoietic neoplasms in mice. EMBO J.9, 1069–1078 (1990). ArticleCASPubMedPubMed Central Google Scholar
Hawley, R. G. High-titer retroviral vectors for efficient transduction of functional genes into murine hematopoietic stem cells. Ann. NY Acad. Sci.716, 327–330 (1994). ArticleCASPubMed Google Scholar
Cherry, S. R., Biniszkiewicz, D., van Parijs, L., Baltimore, D. & Jaenisch, R. Retroviral expression in embryonic stem cells and hematopoietic stem cells. Mol. Cell. Biol.20, 7419–7426 (2000). ArticleCASPubMedPubMed Central Google Scholar
Zhang, X. & Ren, R. Bcr–Abl efficiently induces a myeloproliferative disease and production of excess interleukin-3 and granulocyte-macrophage colony-stimulating factor in mice: a novel model for chronic myelogenous leukemia. Blood92, 3829–3840 (1998). CASPubMed Google Scholar
Pear, W. S. et al. Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow. Blood92, 3780–3792 (1998). CASPubMed Google Scholar
Li, S., Ilaria, R. L., Million, R. P., Daley, G. Q. & Van Etten, R. A. The p190, p210, and p230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia-like syndrome in mice but have different lymphoid leukemogenic activity. J. Exp. Med.189, 1399–1412 (1999). ArticleCASPubMedPubMed Central Google Scholar
Heisterkamp, N., Jenster, G., Kioussis, D., Pattengale, P. K. & Groffen, J. Human bcr_–_abl gene has a lethal effect on embryogenesis. Transgenic Res.1, 45–53 (1991). ArticleCASPubMed Google Scholar
Castellanos, A. et al. A BCR–ABL(p190) fusion gene made by homologous recombination causes B-cell acute lymphoblastic leukemias in chimeric mice with independence of the endogenous bcr product. Blood90, 2168–2174 (1997). CASPubMed Google Scholar
Heisterkamp, N. et al. Acute leukemia in bcr/abl transgenic mice. Nature344, 251–253 (1990). ArticleCASPubMed Google Scholar
Voncken, J. W. et al. Restricted oncogenicity of BCR/ABL p190 in transgenic mice. Cancer Res.52, 4534–4539 (1992). CASPubMed Google Scholar
Voncken, J. W. et al. BCR/ABL P210 and P190 cause distinct leukemia in transgenic mice. Blood86, 4603–4611 (1995). CASPubMed Google Scholar
Honda, H. et al. Expression of p210bcr–abl by metallothionein promoter induced T-cell leukemia in transgenic mice. Blood85, 2853–2861 (1995). CASPubMed Google Scholar
Huettner, C. S., Zhang, P., Van Etten, R. A. & Tenen, D. G. Reveribility of acute B-cell leukemia induced by BCR–ABL1. Nature Genet.24, 57–60 (2000). ArticleCASPubMed Google Scholar
Huettner, C. S. et al. Inducible expression of BCR/ABL using human CD34 regulatory elements results in a megakaryocytic myeloproliferative syndrome. Blood102, 3363–3370 (2003). ArticleCASPubMed Google Scholar
Koschmieder, S. et al. Inducible chronic phase of myeloid leukemia with expansion of hematopoietic stem cells in a transgenic model of BCR–ABL leukaemogenesis. Blood105, 324–334 (2005). ArticleCASPubMed Google Scholar
Faderl, S. et al. The biology of chronic myeloid leukemia. N. Engl. J. Med.341, 164–172 (1999). ArticleCASPubMed Google Scholar
Deininger, M. W., Goldman, J. M. & Melo, J. V. The molecular biology of chronic myeloid leukemia. Blood96, 3343–3356 (2000). CASPubMed Google Scholar
Ahuja, H. G., Popplewell, L., Tcheurekdjian, L. & Slovak, M. L. NUP98 gene rearrangements and the clonal evolution of chronic myelogenous leukemia. Genes Chromosom. Cancer30, 410–415 (2001). ArticleCASPubMed Google Scholar
Colovic, M., Jankovic, G., Bila, J., Djordjevic, V. & Wiernik, P. H. Inversion of chromosome 16 in accelerated phase of chronic myeloid leukaemia: report of a case and review of the literature. Med. Oncol.15, 199–201 (1998). ArticleCASPubMed Google Scholar
de Bruijn, M. F. & Speck, N. A. Core-binding factors in hematopoiesis and immune function. Oncogene23, 4238–4248 (2004). ArticleCASPubMed Google Scholar
Ihle, J. N., Morishita, K., Matsugi, T. & Bartholomew, C. Insertional mutagenesis and transformation of hematopoietic stem cells. Prog. Clin. Biol. Res.352, 329–337 (1990). CASPubMed Google Scholar
Cuenco, G. M., Nucifora, G. & Ren, R. Human AML1/MDS1/EVI1 fusion protein induces an acute myelogenous leukemia (AML) in mice: a novel model for human AML. Proc. Natl Acad. Sci. USA97, 1760–1765 (2000). ArticleCASPubMedPubMed Central Google Scholar
Cuenco, G. M. & Ren, R. Cooperation of BCR-ABL and AML1/MDS1/EVI1 in blocking myeloid differentiation and rapid induction of an acute myelogenous leukemia. Oncogene20, 8236–8248 (2001). The first report of cooperation of BCR–ABL and an oncogenic transcription factor in induction of a myeloblastic leukaemia in mice. Together, these factors block myeloid differentiation, transforming CML from the chronic phase to blast phase. ArticleCASPubMed Google Scholar
Dash, A. B. et al. A murine model of CML blast crisis induced by cooperation between BCR/ABL and NUP98/HOXA9. Proc. Natl Acad. Sci. USA99, 7622–7627 (2002). ArticleCASPubMedPubMed Central Google Scholar
Jamieson, C. H. et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N. Engl. J. Med.351, 657–667 (2004). Reported that GMPs in blast-phase CML undergo self renewal. The results indicate that GMPs are transformed into leukaemic stem cells during blast-phase CML. ArticleCASPubMed Google Scholar
Ghaffari, S., Daley, G. Q. & Lodish, H. F. Growth factor independence and BCR/ABL transformation: promise and pitfalls of murine model systems and assays. Leukemia13, 1200–1206 (1999). ArticleCASPubMed Google Scholar
Ren, R. Modeling the dosage effect of oncogenes in leukaemogenesis. Curr. Opin. Hematol.11, 25–34 (2004). ArticlePubMed Google Scholar
Gross, A. W., Zhang, X. & Ren, R. Bcr–Abl with an SH3 deletion retains the ability to induce a myeloproliferative disease in mice, yet c-Abl activated by an sh3 deletion induces only lymphoid malignancy. Mol. Cell. Biol.19, 6918–6928 (1999). Showed that activation of the ABL kinase activity is not sufficient for BCR–ABL to induce CML-like disease in mice. ArticleCASPubMedPubMed Central Google Scholar
Gross, A. W. & Ren, R. Bcr–Abl has a greater intrinsic capacity than v-Abl to induce the neoplastic expansion of myeloid cells in vivo. Oncogene19, 6286–6296 (2000). ArticleCASPubMed Google Scholar
McWhirter, J. R., Gaalasso, D. L. & Wang, J. Y. J. A coiled-coil oligomerization domain of Bcr is essential for the transforming function of Bcr–Abl oncoproteins. Mol. Cell. Biol.13, 7587–7595 (1993). ArticleCASPubMedPubMed Central Google Scholar
Zhang, X., Subrahmanyam, R., Wong, R., Gross, A. W. & Ren, R. The NH2-terminal coiled-coil domain and tyrosine 177 play important roles in induction of a myeloproliferative disease in mice by Bcr–Abl. Mol. Cell. Biol.21, 840–853 (2001). ArticleCASPubMedPubMed Central Google Scholar
He, Y. et al. The coiled-coil domain and Tyr177 of bcr are required to induce a murine chronic myelogenous leukemia-like disease by bcr/abl. Blood99, 2957–5768 (2002). ArticleCASPubMed Google Scholar
Pendergast, A. M. et al. BCR–ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the Grb-2 adaptor protein. Cell75, 175–185 (1993). ArticleCASPubMed Google Scholar
Sattler, M. et al. Critical role for Gab2 in transformation by BCR/ABL. Cancer Cell1, 479–492 (2002). Described the critical role of GAB2 in mediating the ability of BCR–ABL to confer cytokine-independent growth of primary myeloid cells. ArticleCASPubMed Google Scholar
Million, R. P. & Van Etten, R. A. The Grb2 binding site is required for the induction of chronic myeloid leukemia-like disease in mice by the Bcr/Abl tyrosine kinase. Blood96, 664–670 (2000). CASPubMed Google Scholar
Goga, A., McLaughlin, J., Afar, D. E., Saffran, D. C. & Witte, O. N. Alternative signals to RAS for hematopoietic transformation by the Bcr–Abl oncogene. Cell82, 981–988 (1995). ArticleCASPubMed Google Scholar
Zhang, X., Wong, R., Hao, S. X., Pear, W. S. & Ren, R. The SH2 domain of bcr–Abl is not required to induce a murine myeloproliferative disease; however, SH2 signaling influences disease latency and phenotype. Blood97, 277–287 (2001). ArticleCASPubMed Google Scholar
Roumiantsev, S., de Aos, I. E., Varticovski, L., Ilaria, R. L. & Van Etten, R. A. The src homology 2 domain of Bcr/Abl is required for efficient induction of chronic myeloid leukemia-like disease in mice but not for lymphoid leukaemogenesis or activation of phosphatidylinositol 3-kinase. Blood97, 4–13 (2001). ArticleCASPubMed Google Scholar
Prywes, R., Foulkes, J. G., Rosenberg, N. & Baltimore, D. Sequences of the A-MuLV protein needed for fibroblast and lymphoid cell transformation. Cell34, 569–579 (1983). ArticleCASPubMed Google Scholar
Wertheim, J. A. et al. Localization of BCR–ABL to F-actin regulates cell adhesion but does not attenuate CML development. Blood102, 2220–2228 (2003). ArticleCASPubMed Google Scholar
Dai, Z., Kerzic, P., Schroeder, W. G. & McNiece, I. K. Deletion of the Src homology 3 domain and C-terminal proline-rich sequences in Bcr-Abl prevents Abl interactor 2 degradation and spontaneous cell migration and impairs leukaemogenesis. J. Biol. Chem.276, 28954–28960 (2001). ArticleCASPubMed Google Scholar
Nieborowska-Skorska, M., Hoser, G., Kossev, P., Wasik, M. A. & Skorski, T. Complementary functions of the antiapoptotic protein A1 and serine/threonine kinase pim-1 in the BCR/ABL-mediated leukaemogenesis. Blood99, 4531–4539 (2002). ArticleCASPubMed Google Scholar
Wong, S. & Witte, O. N. The BCR–ABL story: bench to bedside and back. Annu. Rev. Immunol.22, 247–306 (2004). ArticleCASPubMed Google Scholar
Jiang, X., Lopez, A., Holyoake, T., Eaves, A. & Eaves, C. Autocrine production and action of IL-3 and granulocyte colony- stimulating factor in chronic myeloid leukemia. Proc. Natl Acad. Sci. USA96, 12804–12809 (1999). ArticleCASPubMedPubMed Central Google Scholar
Sexl, V. et al. Stat5a/b contribute to interleukin 7-induced B-cell precursor expansion, but abl- and bcr/abl-induced transformation are independent of stat5. Blood96, 2277–2283 (2000). CASPubMed Google Scholar
Dinulescu, D. M. et al. c-CBL is not required for leukemia induction by Bcr–Abl in mice. Oncogene22, 8852–8860 (2003). ArticleCASPubMed Google Scholar
Li, S. et al. Interleukin 3 and granulocyte-macrophage colony-stimulating factor are not required for induction of chronic myeloid leukemia-like myeloproliferative disease in mice by BCR/ABL. Blood97, 1442–1450 (2001). ArticleCASPubMed Google Scholar
Hu, Y. et al. Requirement of Src kinases Lyn, Hck and Fgr for BCR–ABL1-induced B-lymphoblastic leukemia but not chronic myeloid leukemia. Nature Genet.36, 453–461 (2004). ArticleCASPubMed Google Scholar
Ptasznik, A., Nakata, Y., Kalota, A., Emerson, S. G. & Gewirtz, A. M. Short interfering RNA (siRNA) targeting the Lyn kinase induces apoptosis in primary, and drug-resistant, BCR–ABL1+ leukemia cells. Nature Med.10, 1187–1189 (2004). ArticleCASPubMed Google Scholar
Vivanco, I. & Sawyers, C. L. The phosphatidylinositol 3-kinase–AKT pathway in human cancer. Nature Rev. Cancer2, 489–501 (2002). ArticleCAS Google Scholar
Tartaglia, M. et al. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nature Genet.29, 465–468 (2001). ArticleCASPubMed Google Scholar
Tartaglia, M. et al. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nature Genet.34, 148–150 (2003). ArticleCASPubMed Google Scholar
Kosaki, K. et al. PTPN11 (protein-tyrosine phosphatase, nonreceptor-type 11) mutations in seven Japanese patients with Noonan syndrome. J. Clin. Endocrinol. Metab.87, 3529–3533 (2002). ArticleCASPubMed Google Scholar
Neel, B. G., Gu, H. & Pao, L. The 'Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem. Sci.28, 284–293 (2003). ArticleCASPubMed Google Scholar
Bos, J. L. ras oncogenes in human cancer: a review. Cancer Res.49, 4682–4689 (1989). CASPubMed Google Scholar
Braun, B. S. et al. Somatic activation of oncogenic Kras in hematopoietic cells initiates a rapidly fatal myeloproliferative disorder. Proc. Natl Acad. Sci. USA101, 597–602 (2004). ArticleCASPubMed Google Scholar
Chan, I. T. et al. Conditional expression of oncogenic K-ras from its endogenous promoter induces a myeloproliferative disease. J. Clin. Invest.113, 528–538 (2004). ArticleCASPubMedPubMed Central Google Scholar
Holtschke, T. et al. Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene. Cell87, 307–317 (1996). Reported the striking discovery thatIcsbp-null mice develop of a CML-like disease, indicating that this protein is a tumour suppressor. ArticleCASPubMed Google Scholar
Tamura, T., Nagamura-Inoue, T., Shmeltzer, Z., Kuwata, T. & Ozato, K. ICSBP directs bipotential myeloid progenitor cells to differentiate into mature macrophages. Immunity13, 155–165 (2000). ArticleCASPubMed Google Scholar
Hao, S. X. & Ren, R. Expression of ICSBP is downregulated in Bcr–Abl-induced murine CML-like disease, and forced coexpression of ICSBP inhibits the Bcr–Abl-induced myeloproliferative disorder. Mol. Cell. Biol.20, 1149–1161 (2000). ArticleCASPubMedPubMed Central Google Scholar
Schmidt, M. et al. Lack of interferon consensus sequence binding protein (ICSBP) transcripts in human myeloid leukemias. Blood91, 22–29 (1998). CASPubMed Google Scholar
Passegue, E., Jochum, W., Schorpp-Kistner, M., Mohle-Steinlein, U. & Wagner, E. F. Chronic myeloid leukemia with increased granulocyte progenitors in mice lacking junB expression in the myeloid lineage. Cell104, 21–32 (2001). Showed that specific inactivation of JUNB in haematopoietic cells led to the development of a CML-like disease in mice. The results indicate that JUNB is a tumour suppressor. ArticleCASPubMed Google Scholar
Passegue, E., Wagner, E. F. & Weissman, I. L. JunB deficiency leads to a myeloproliferative disorder arising from hematopoietic stem cells. Cell119, 431–443 (2004). Reported that induction of CML-like disease by JUNB inactivation only occurs in JUNB-deficient long-term self-renewing haematopoietic stem cells. The results indicated the haematopoietic stem-cell origin of CML. ArticleCASPubMed Google Scholar
Bruchova, H., Borovanova, T., Klamova, H. & Brdicka, R. Gene expression profiling in chronic myeloid leukemia patients treated with hydroxyurea. Leuk. Lymphoma43, 1289–1295 (2002). ArticleCASPubMed Google Scholar
Yang, M. Y., Liu, T. C., Chang, J. G., Lin, P. M. & Lin, S. F. JunB gene expression is inactivated by methylation in chronic myeloid leukemia. Blood101, 3205–3211 (2003). ArticleCASPubMed Google Scholar
Ishida, D. et al. Myeloproliferative stem cell disorders by deregulated Rap1 activation in SPA-1-deficient mice. Cancer Cell4, 55–65 (2003). Described the targeted inactivation of SIPA1, which led to the development of a CML-like disease in mice. ArticleCASPubMed Google Scholar
Mizuchi, D. et al. BCR/ABL activates Rap1 and B-Raf to stimulate the MEK/Erk signaling pathway in hematopoietic cells. Biochem. Biophys. Res. Commun.326, 645–651 (2005). ArticleCASPubMed Google Scholar
Helgason, C. D. et al. Targeted disruption of SHIP leads to hemopoietic perturbations, lung pathology, and a shortened life span. Genes Dev.12, 1610–1620 (1998). ArticleCASPubMedPubMed Central Google Scholar
Sattler, M. et al. BCR/ABL directly inhibits expression of SHIP, an SH2-containing polyinositol-5-phosphatase involved in the regulation of hematopoiesis. Mol. Cell. Biol.19, 7473–7480 (1999). ArticleCASPubMedPubMed Central Google Scholar
Jiang, X. et al. Evidence for a positive role of SHIP in the BCR–ABL-mediated transformation of primitive murine hematopoietic cells and in human chronic myeloid leukemia. Blood102, 2976–2984 (2003). ArticleCASPubMed Google Scholar
Graham, S. M. et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood99, 319–325 (2002). ArticleCASPubMed Google Scholar
Roche-Lestienne, C. et al. Several types of mutations of the Abl gene can be found in chronic myeloid leukemia patients resistant to STI571, and they can pre-exist to the onset of treatment. Blood100, 1014–1018 (2002). ArticleCASPubMed Google Scholar
Holtz, M. S. et al. Imatinib mesylate (STI571) inhibits growth of primitive malignant progenitors in chronic myelogenous leukemia through reversal of abnormally increased proliferation. Blood99, 3792–3800 (2002). ArticleCASPubMed Google Scholar
Wertheim, J. A. et al. BCR–ABL-induced adhesion defects are tyrosine kinase-independent. Blood99, 4122–4130 (2002). Showed that ABL-kinase-deficient BCR–ABL retains the ability to dysregulate cell adhesion. ArticleCASPubMed Google Scholar
Huntly, B. J. et al. MOZ–TIF2, but not BCR–ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell6, 587–596 (2004). Demonstrated that some, but not all, leukaemia-associated oncogenes could confer properties of leukaemic stem cells to haematopoietic progenitors destined to undergo apoptosis. ArticleCASPubMed Google Scholar
Yoshida, C. & Melo, J. V. Biology of chronic myeloid leukemia and possible therapeutic approaches to imatinib-resistant disease. Int. J. Hematol.79, 420–433 (2004). ArticleCASPubMed Google Scholar
Goldman, J. M. Chronic myeloid leukemia-still a few questions. Exp. Hematol.32, 2–10 (2004). ArticlePubMed Google Scholar
Skorski, T. BCR/ABL regulates response to DNA damage: the role in resistance to genotoxic treatment and in genomic instability. Oncogene21, 8591–8604 (2002). ArticleCASPubMed Google Scholar
Holyoake, T. L., Jiang, X., Drummond, M. W., Eaves, A. C. & Eaves, C. J. Elucidating critical mechanisms of deregulated stem cell turnover in the chronic phase of chronic myeloid leukemia. Leukemia16, 549–558 (2002). ArticleCASPubMed Google Scholar
Shah, N. P. et al. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science305, 399–401 (2004). ArticleCASPubMed Google Scholar
Sawyers, C. L. et al. Hematologic and cytogenetic responses in Imatinib-resistant chronic phase chronic myelogenous leukemia patients treated with the dual SRC/ABL kinase inhibitor BMS-354825: results from a phase I dose escalation study. Blood104, 4a (2004). Article Google Scholar
Vigneri, P. & Wang, J. Y. Induction of apoptosis in chronic myelogenous leukemia cells through nuclear entrapment of BCR–ABL tyrosine kinase. Nature Med.7, 228–234 (2001). ArticleCASPubMed Google Scholar
McWhirter, J. R. & Wang, J. Y. J. An actin-binding function contributes to transformation by the Bcr–Abl oncoprotein of Philadelphia chromosome-positive human leukemias. EMBO J.12, 1533–1546 (1993). ArticleCASPubMedPubMed Central Google Scholar
Vickers, M. Estimation of the number of mutations necessary to cause chronic myeloid leukaemia from epidemiological data. Br. J. Haematol.94, 1–4 (1996). ArticleCASPubMed Google Scholar
Lichtman, M. Chronic myelogenous leukemia and related disorders. in Williams Helatology (eds Beutler, E., Lichtman, M. A., Coller, B. S. & Kipps, T. J.) 298–324 (McGraw–Hill, New York, 1995). Google Scholar
Biernaux, C., Loos, M., Sels, A., Huez, G. & Stryckmans, P. Detection of major bcr_–_abl gene expression at a very low level in blood cells of some healthy individuals. Blood86, 3118–3122 (1995). CASPubMed Google Scholar
Bose, S., Deininger, M., Gora-Tybor, J., Goldman, J. M. & Melo, J. V. The presence of typical and atypical BCR_–_ABL fusion genes in leukocytes of normal individuals: biologic significance and implications for the assessment of minimal residual disease. Blood92, 3362–3367 (1998). CASPubMed Google Scholar
Takahashi, N., Miura, I., Saitoh, K. & Miura, A. B. Lineage involvement of stem cells bearing the philadelphia chromosome in chronic myeloid leukemia in the chronic phase as shown by a combination of fluorescence-activated cell sorting and fluorescence in situ hybridization. Blood92, 4758–4763 (1998). CASPubMed Google Scholar
Nagar, B. et al. Structural basis for the autoinhibition of c-Abl tyrosine kinase. Cell112, 859–871 (2003). ArticleCASPubMed Google Scholar