Tumour stem cells and drug resistance (original) (raw)
Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature414, 105–111 (2001). ArticleCASPubMed Google Scholar
Al-Hajj, M., Becker, M. W., Wicha, M., Weissman, I. & Clarke, M. F. Therapeutic implications of cancer stem cells. Curr. Opin. Genet. Dev.14, 43–47 (2004). ArticleCASPubMed Google Scholar
Morrison, S. J., Wandycz, A. M., Hemmati, H. D., Wright, D. E. & Weissman, I. L. Identification of a lineage of multipotent hematopoietic progenitors. Development124, 1929–1939 (1997). ArticleCASPubMed Google Scholar
Dontu, G., Al-Hajj, M., Abdallah, W. M., Clarke, M. F. & Wicha, M. S. Stem cells in normal breast development and breast cancer. Cell Prolif.36 (Suppl. 1), 59–72 (2003). ArticleCASPubMedPubMed Central Google Scholar
Kordon, E. C. & Smith, G. H. An entire functional mammary gland may comprise the progeny from a single cell. Development125, 1921–1930 (1998). ArticleCASPubMed Google Scholar
Price, J. E. & Tarin, D. Low incidence of tumourigenicity in agarose colonies from spontaneous murine mammary tumours. Differentiation41, 202–207 (1989). ArticleCASPubMed Google Scholar
Gioanni, J. et al. In vitro clonogenicity in relation to kinetic and clinicopathological features of breast cancer. Bull. Cancer75, 285–290 (1988). CASPubMed Google Scholar
Southam, C. M. & Brunschwig, A. Quantitative studies of autotransplantation of human cancer. Cancer14, 971–978 (1960). Article Google Scholar
Lapidot, T. et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature367, 645–648 (1994). Original report demonstrating the existence of stem cells in leukaemia. ArticleCASPubMed Google Scholar
Bonnet, D. & Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Med.3, 730–737 (1997). ArticleCASPubMed Google Scholar
Hope, K. J., Jin, L. & Dick, J. E. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nature Immunol.5, 738–43 (2004). ArticleCAS Google Scholar
Jamieson, C. H. et al. Granulocyte–macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N. Engl. J. Med.351, 657–667 (2004). ArticleCASPubMed Google Scholar
Damjanov, I. Teratocarcinoma stem cells. Cancer Surv.9, 303–319 (1990). CASPubMed Google Scholar
Sell, S. Stem cell origin of cancer and differentiation therapy. Crit. Rev. Oncol. Hematol.51, 1–28 (2004). ArticlePubMed Google Scholar
Mintz, B. & Illmensee, K. Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc. Natl Acad. Sci. USA72, 3585–3589 (1975). ArticleCASPubMedPubMed Central Google Scholar
Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA100, 3983–3988 (2003). Demonstrates a population of cells in breast cancers possessing markers in common with normal breast stem cells. Small numbers of these cancer stem cells could generate tumours in mice, whereas the non-cancer stem cells could not. ArticleCASPubMedPubMed Central Google Scholar
Liu, B. Y., McDermott, S. P., Khwaja, S. S. & Alexander, C. M. The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proc. Natl Acad. Sci. USA101, 4158–4163 (2004). ArticleCASPubMedPubMed Central Google Scholar
Singh, S. K. et al. Identification of human brain tumour initiating cells. Nature432, 396–401 (2004). ArticleCASPubMed Google Scholar
Hemmati, H. D. et al. Cancerous stem cells can arise from pediatric brain tumors. Proc. Natl Acad. Sci. USA100, 15178–15183 (2003). Describes the isolation of tumour stem cells from paediatric brain cancers. ArticleCASPubMedPubMed Central Google Scholar
Singh, S. K., Clarke, I. D., Hide, T. & Dirks, P. B. Cancer stem cells in nervous system tumors. Oncogene23, 7267–7273 (2004). ArticleCASPubMed Google Scholar
Singh, S. K. et al. Identification of a cancer stem cell in human brain tumors. Cancer Res.63, 5821–5828 (2003). CASPubMed Google Scholar
Richardson, G. D. et al. CD133, a novel marker for human prostatic epithelial stem cells. J. Cell Sci.117, 3539–3545 (2004). ArticleCASPubMed Google Scholar
Yu, S., Zhang, J. Z., Zhao, C. L., Zhang, H. Y. & Xu, Q. Isolation and characterization of the CD133+ precursors from the ventricular zone of human fetal brain by magnetic affinity cell sorting. Biotechnol. Lett.26, 1131–1136 (2004). ArticleCASPubMed Google Scholar
Wu, X. et al. Tissue-engineered microvessels on three-dimensional biodegradable scaffolds using human endothelial progenitor cells. Am. J. Physiol. Heart Circ. Physiol.287, H480–H487 (2004). ArticleCASPubMed Google Scholar
Cozzio, A. et al. Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev.17, 3029–3035 (2003). ArticleCASPubMedPubMed Central Google Scholar
Blanpain, C., Lowry, W. E., Geoghegan, A., Polak, L. & Fuchs, E. Self-Renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell118, 635–648 (2004). ArticleCASPubMed Google Scholar
Scharenberg, C. W., Harkey, M. A. & Torok-Storb, B. The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood99, 507–512 (2002). ArticleCASPubMed Google Scholar
Gottesman, M. M., Fojo, T. & Bates, S. E. Multidrug resistance in cancer: role of ATP-dependent transporters. Nature Rev. Cancer2, 48–58 (2002). ArticleCAS Google Scholar
Kim, M. et al. The multidrug resistance transporter ABCG2 (breast cancer resistance protein 1) effluxes Hoechst 33342 and is overexpressed in hematopoietic stem cells. Clin. Cancer Res.8, 22–28 (2002). CASPubMed Google Scholar
Allikmets, R., Schriml, L. M., Hutchinson, A., Romano-Spica, V. & Dean, M. A human placenta-specific ATP-binding cassette gene (ABCP) on chromosome 4q22 that is involved in multidrug resistance. Cancer Res.58, 5337–5339 (1998). CASPubMed Google Scholar
Miyake, K. et al. Molecular cloning of cDNAs which are highly overexpressed in mitoxantrone-resistant cells: demonstration of homology to ABC transport genes. Cancer Res.59, 8–13 (1999). CASPubMed Google Scholar
Doyle, L. A. et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc. Natl Acad. Sci. USA95, 15665–15670 (1998). ArticleCASPubMedPubMed Central Google Scholar
Dean, M., Rzhetsky, A. & Allikmets, R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res.11, 1156–1166 (2001). ArticleCASPubMed Google Scholar
Schinkel, A. H. et al. Disruption of the mouse Mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell77, 491–502 (1994). ArticleCASPubMed Google Scholar
Zhou, S., Zong, Y., Lu, T. & Sorrentino, B. P. Hematopoietic cells from mice that are deficient in both Bcrp1/Abcg2 and Mdr1a/1b develop normally but are sensitized to mitoxantrone. Biotechniques35, 1248–1252 (2003). ArticleCASPubMed Google Scholar
Zhou, S. et al. Bcrp1 gene expression is required for normal numbers of side population stem cells in mice, and confers relative protection to mitoxantrone in hematopoietic cells in vivo. Proc. Natl Acad. Sci. USA99, 12339–12344 (2002). ArticleCASPubMedPubMed Central Google Scholar
Jonker, J. W. et al. The breast cancer resistance protein protects against a major chlorophyll-derived dietary phototoxin and protoporphyria. Proc. Natl Acad. Sci. USA99, 15649–15654 (2002). ArticleCASPubMedPubMed Central Google Scholar
Goodell, M. A., Brose, K., Paradis, G., Conner, A. S. & Mulligan, R. C. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J. Exp. Med.183, 1797–1806 (1996). ArticleCASPubMed Google Scholar
Summer, R. et al. Side population cells and Bcrp1 expression in lung. Am. J. Physiol. Lung Cell Mol. Physiol.285, L97–L104 (2003). ArticleCASPubMed Google Scholar
Alvi, A. J. et al. Functional and molecular characterisation of mammary side population cells. Breast Cancer Res.5, R1–R8 (2003). ArticlePubMed Google Scholar
Zhou, S. et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nature Med.7, 1028–1034 (2001). Shows thatABCG2is highly expressed in normal stem cells and is responsible for the low retention of fluorescent dyes used to identify the SP population. ArticleCASPubMed Google Scholar
Lassalle, B. et al. 'Side Population' cells in adult mouse testis express Bcrp1 gene and are enriched in spermatogonia and germinal stem cells. Development131, 479–487 (2004). ArticleCASPubMed Google Scholar
Asakura, A. & Rudnicki, M. A. Side population cells from diverse adult tissues are capable of in vitro hematopoietic differentiation. Exp. Hematol.30, 1339–1345 (2002). ArticlePubMed Google Scholar
Martin, C. M. et al. Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev. Biol.265, 262–275 (2004). ArticleCASPubMed Google Scholar
Lechner, A., Leech, C. A., Abraham, E. J., Nolan, A. L. & Habener, J. F. Nestin-positive progenitor cells derived from adult human pancreatic islets of Langerhans contain side population (SP) cells defined by expression of the ABCG2 (BCRP1) ATP-binding cassette transporter. Biochem. Biophys. Res. Commun.293, 670–674 (2002). ArticleCASPubMed Google Scholar
Terunuma, A., Jackson, K. L., Kapoor, V., Telford, W. G. & Vogel, J. C. Side population keratinocytes resembling bone marrow side population stem cells are distinct from label-retaining keratinocyte stem cells. J. Invest. Dermatol.121, 1095–1103 (2003). ArticleCASPubMed Google Scholar
Hirschmann-Jax, C. et al. A distinct 'side population' of cells with high drug efflux capacity in human tumor cells. Proc. Natl Acad. Sci. USA101, 14228–14233 (2004). ArticleCASPubMedPubMed Central Google Scholar
Kondo, T., Setoguchi, T. & Taga, T. Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc. Natl Acad. Sci. USA101, 781–786 (2004). Shows that long-established cancer cell lines contain a small population of SP cells that behave as cancer stem cells. Like cancer stem cells isolated from brain tumours, these SP cells can give rise to the multiple differentiated cell types found in the cell line. ArticleCASPubMedPubMed Central Google Scholar
Mizoguchi, T. et al. Expression of the MDR1 gene in human gastric and colorectal carcinomas. J. Natl Cancer Inst.82, 1679–1683 (1990). ArticleCASPubMed Google Scholar
Nishiyama, K. et al. Expression of the multidrug transporter, P-glycoprotein, in renal and transitional cell carcinomas. Cancer71, 3611–3619 (1993). ArticleCASPubMed Google Scholar
Bates, S. E. et al. Expression of a drug resistance gene in human neuroblastoma cell lines: modulation by retinoic acid-induced differentiation. Mol. Cell. Biol.9, 4337–4344 (1989). CASPubMedPubMed Central Google Scholar
Mickley, L. A. et al. Modulation of the expression of a multidrug resistance gene (mdr-1/P-glycoprotein) by differentiating agents. J. Biol. Chem.264, 18031–18040 (1989). ArticleCASPubMed Google Scholar
Knutsen, T. et al. Cytogenetic and molecular characterization of random chromosomal rearrangements activating the drug resistance gene, MDR1/ P-glycoprotein, in drug-selected cell lines and patients with drug refractory ALL. Genes Chromosom. Cancer23, 44–54 (1998). ArticleCASPubMed Google Scholar
Mickley, L. A., Spengler, B. A., Knutsen, T. A., Biedler, J. L. & Fojo, T. Gene rearrangement: a novel mechanism for MDR-1 gene activation. J. Clin. Invest.99, 1947–1957 (1997). ArticleCASPubMedPubMed Central Google Scholar
Sato, N., Leopold, P. L. & Crystal, R. G. Effect of adenovirus-mediated expression of Sonic hedgehog gene on hair regrowth in mice with chemotherapy-induced alopecia. J. Natl Cancer Inst.93, 1858–1864 (2001). ArticleCASPubMed Google Scholar
Cotsarelis, G. & Millar, S. E. Towards a molecular understanding of hair loss and its treatment. Trends Mol. Med.7, 293–301 (2001). ArticleCASPubMed Google Scholar
Houghton, P. J. et al. Imatinib mesylate is a potent inhibitor of the ABCG2 (BCRP) transporter and reverses resistance to topotecan and SN-38 in vitro. Cancer Res.64, 2333–2337 (2004). ArticleCASPubMed Google Scholar
Ozvegy-Laczka, C. et al. High-affinity interaction of tyrosine kinase inhibitors with the ABCG2 multidrug transporter. Mol. Pharmacol.65, 1485–1495 (2004). ArticlePubMed Google Scholar
Burger, H. et al. Imatinib mesylate (STI571) is a substrate for the breast cancer resistance protein (BCRP)/ABCG2 drug pump. Blood104, 2940–2942 (2004). ArticleCASPubMed Google Scholar
Roche-Lestienne, C. et al. Several types of mutations of the Abl gene can be found in chronic myeloid leukemia patients resistant to STI571, and they can pre-exist to the onset of treatment. Blood100, 1014–1018 (2002). ArticleCASPubMed Google Scholar
Hofmann, W. K. et al. Presence of the BCR–ABL mutation Glu255Lys prior to STI571 (imatinib) treatment in patients with Ph+ acute lymphoblastic leukemia. Blood102, 659–661 (2003). ArticleCASPubMed Google Scholar
Goldie, J. H. & Coldman, A. J. A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treat. Rep.63, 1727–1733 (1979). CASPubMed Google Scholar
Graham, S. M. et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood99, 319–325 (2002). ArticleCASPubMed Google Scholar
Holtz, M. S. et al. Imatinib mesylate (STI571) inhibits growth of primitive malignant progenitors in chronic myelogenous leukemia through reversal of abnormally increased proliferation. Blood99, 3792–3800 (2002). ArticleCASPubMed Google Scholar
Paterson, S. C., Smith, K. D., Holyoake, T. L. & Jorgensen, H. G. Is there a cloud in the silver lining for imatinib? Br. J. Cancer88, 983–987 (2003). ArticleCASPubMedPubMed Central Google Scholar
La Rosee, P., Shen, L., Stoffregen, E. P., Deininger, M. & Druker, B. J. No correlation between the proliferative status of Bcr–Abl positive cell lines and the proapoptotic activity of imatinib mesylate (Gleevec/Glivec). Hematol. J.4, 413–419 (2003). ArticleCASPubMed Google Scholar
Agrawal, M. et al. Increased 99mTc-sestamibi accumulation in normal liver and drug-resistant tumors after the administration of the glycoprotein inhibitor, XR9576. Clin. Cancer Res.9, 650–656 (2003). CASPubMed Google Scholar
Bakker, M. et al. 99mTc-Sestamibi scanning with SDZ PSC 833 as a functional detection method for resistance modulation in patients with solid tumours. AntiCancer Res.19, 2349–2353 (1999). CASPubMed Google Scholar
Bates, S. E. et al. A phase I/II study of infusional vinblastine with the P-glycoprotein antagonist valspodar (PSC 833) in renal cell carcinoma. Clin. Cancer Res.10, 4724–4733 (2004). ArticleCASPubMed Google Scholar
Peck, R. A. et al. Phase I and pharmacokinetic study of the novel MDR1 and MRP1 inhibitor biricodar administered alone and in combination with doxorubicin. J. Clin. Oncol.19, 3130–3141 (2001). ArticleCASPubMed Google Scholar
Rabindran, S. K., Ross, D. D., Doyle, L. A., Yang, W. & Greenberger, L. M. Fumitremorgin C reverses multidrug resistance in cells transfected with the breast cancer resistance protein. Cancer Res.60, 47–50 (2000). CASPubMed Google Scholar
Allen, J. D. et al. Potent and specific inhibition of the breast cancer resistance protein multidrug transporter in vitro and in mouse intestine by a novel analogue of fumitremorgin C. Mol. Cancer Ther.1, 417–425 (2002). CASPubMed Google Scholar
Cisternino, S., Mercier, C., Bourasset, F., Roux, F. & Scherrmann, J. M. Expression, up-regulation, and transport activity of the multidrug-resistance protein Abcg2 at the mouse blood–brain barrier. Cancer Res.64, 3296–3301 (2004). ArticleCASPubMed Google Scholar
Weisenthal, L. M. & Lippman, M. E. Clonogenic and nonclonogenic in vitro chemosensitivity assays. Cancer Treat. Rep.69, 615–632 (1985). CASPubMed Google Scholar
Secchi, G. C. Cancer chemotherapy. Ann. Ital. Med. Int.5, 288–295 (1990). CASPubMed Google Scholar
Dean, M. Towards a unified model of tumor suppression: lessons learned from the human patched gene. Biochimica et Biophysica Acta1332, M43–M52 (1997). CASPubMed Google Scholar
Nusslein-Volhard, C. & Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature287, 795–801 (1980). ArticleCASPubMed Google Scholar
Hahn, H. et al. A mammalian patched homolog is expressed in target tissues of sonic hedgehog and maps to a region associated with developmental anomalies. J. Biol. Chem.271, 12125–12128 (1996). ArticleCASPubMed Google Scholar
Hahn, H. et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell85, 841–851 (1996). Positional cloning ofPTCHas the tumour-suppressor gene responsible for the nevoid basal-cell carcinoma syndrome. Established a role for the HH–PTCH pathway in cancer. ArticleCASPubMed Google Scholar
Johnson, R. L. et al. Human homolog of patched, a candidate gene for the Basal Cell Nevus Syndrome. Science272, 1668–1671 (1996). ArticleCASPubMed Google Scholar
Berman, D. M. et al. Medulloblastoma growth inhibition by hedgehog pathway blockade. Science297, 1559–1561 (2002). ArticleCASPubMed Google Scholar
Berman, D. M. et al. Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature425, 846–851 (2003). ArticleCASPubMed Google Scholar
Watkins, D. N. et al. Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature422, 313–317 (2003). ArticleCASPubMed Google Scholar
Karhadkar, S. S. et al. Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature431, 707–712 (2004). ArticleCASPubMed Google Scholar
Dalton, W. S. et al. A phase III randomized study of oral verapamil as a chemosensitizer to reverse drug resistance in patients with refractory myeloma. A Southwest Oncology Group study. Cancer75, 815–820 (1995). ArticleCASPubMed Google Scholar
Belpomme, D. et al. Verapamil increases the survival of patients with anthracycline-resistant metastatic breast carcinoma. Ann. Oncol.11, 1471–1476 (2000). ArticleCASPubMed Google Scholar
Millward, M. J. et al. Oral verapamil with chemotherapy for advanced non-small cell lung cancer: a randomised study. Br. J. Cancer67, 1031–1035 (1993). ArticleCASPubMedPubMed Central Google Scholar
Milroy, R. A randomised clinical study of verapamil in addition to combination chemotherapy in small cell lung cancer. West of Scotland Lung Cancer Research Group, and the Aberdeen Oncology Group. Br. J. Cancer68, 813–818 (1993). ArticleCASPubMedPubMed Central Google Scholar
Wishart, G. C. et al. Quinidine as a resistance modulator of epirubicin in advanced breast cancer: mature results of a placebo-controlled randomized trial. J. Clin. Oncol.12, 1771–1777 (1994). ArticleCASPubMed Google Scholar
Sonneveld, P. et al. Cyclosporin A combined with vincristine, doxorubicin and dexamethasone (VAD) compared with VAD alone in patients with advanced refractory multiple myeloma: an EORTC-HOVON randomized phase III study (06914). Br. J. Haematol.115, 895–902 (2001). ArticleCASPubMed Google Scholar
List, A. F. et al. Benefit of cyclosporine modulation of drug resistance in patients with poor-risk acute myeloid leukemia: a Southwest Oncology Group study. Blood98, 3212–3220 (2001). ArticleCASPubMed Google Scholar
Greenberg, P. L. et al. Mitoxantrone, etoposide, and cytarabine with or without valspodar in patients with relapsed or refractory acute myeloid leukemia and high-risk myelodysplastic syndrome: a phase III trial (E2995). J. Clin. Oncol.22, 1078–1086 (2004). ArticleCASPubMed Google Scholar
Baer, M. R. et al. Phase 3 study of the multidrug resistance modulator PSC-833 in previously untreated patients 60 years of age and older with acute myeloid leukemia: Cancer and Leukemia Group B Study 9720. Blood100, 1224–1232 (2002). ArticleCASPubMed Google Scholar
Rago, R. P. et al. Safety and efficacy of the MDR inhibitor Incel (biricodar, VX-710) in combination with mitoxantrone and prednisone in hormone-refractory prostate cancer. Cancer Chemother. Pharmacol.51, 297–305 (2003). ArticleCASPubMed Google Scholar
Seiden, M. V. et al. A phase II study of the MDR inhibitor biricodar (INCEL, VX-710) and paclitaxel in women with advanced ovarian cancer refractory to paclitaxel therapy. Gynecol. Oncol.86, 302–310 (2002). ArticleCASPubMed Google Scholar
Toppmeyer, D. et al. Safety and efficacy of the multidrug resistance inhibitor Incel (biricodar; VX-710) in combination with paclitaxel for advanced breast cancer refractory to paclitaxel. Clin. Cancer Res.8, 670–678 (2002). CASPubMed Google Scholar
Bramwell, V. H. et al. Safety and efficacy of the multidrug-resistance inhibitor biricodar (VX-710) with concurrent doxorubicin in patients with anthracycline-resistant advanced soft tissue sarcoma. Clin. Cancer Res.8, 383–393 (2002). CASPubMed Google Scholar
Sparreboom, A. et al. Clinical pharmacokinetics of doxorubicin in combination with GF120918, a potent inhibitor of MDR1 P-glycoprotein. Anticancer Drugs10, 719–728 (1999). ArticleCASPubMed Google Scholar
van Zuylen, L. et al. The orally administered P-glycoprotein inhibitor R101933 does not alter the plasma pharmacokinetics of docetaxel. Clin. Cancer Res.6, 1365–1371 (2000). CASPubMed Google Scholar
Sandler, A. et al. A Phase I trial of a potent P-glycoprotein inhibitor, zosuquidar trihydrochloride (LY335979), administered intravenously in combination with doxorubicin in patients with advanced malignancy. Clin. Cancer Res.10, 3265–3272 (2004). ArticleCASPubMed Google Scholar
Guns, E. S., Denyssevych, T., Dixon, R., Bally, M. B. & Mayer, L. Drug interaction studies between paclitaxel (Taxol) and OC144-093 — a new modulator of MDR in cancer chemotherapy. Eur. J. Drug Metab. Pharmacokinet.27, 119–126 (2002). ArticleCASPubMed Google Scholar
Oldham, R. K., Barnett, D. & Ramos, Z. A phase II study of paclitaxel/CBT–1, an MDR modulator. Proc. Am. Soc. Clin. Oncol.22, 148 (2003). Google Scholar