Cancer as an evolutionary and ecological process (original) (raw)
Nowell, P. C. The clonal evolution of tumor cell populations. Science194, 23–28 (1976). The seminal description of cancer as an evolutionary process. Predicts sequences of clonal expansions, individual variation in response to interventions and therapeutic resistance. ArticleCASPubMed Google Scholar
Crespi, B. & Summers, K. Evolutionary Biology of Cancer. Trends Ecol. Evol.20, 545–552 (2005). ArticlePubMed Google Scholar
Heppner, G. & Miller, F. The cellular basis of tumor progression. Int. Rev. Cytol.177, 1–56 (1998). CASPubMed Google Scholar
Cairns, J. Mutation selection and the natural history of cancer. Nature255, 197–200 (1975). Highlights the interaction between tissue architecture and clonal evolution. Also predicts the retention of a non-recombining, 'immortal' strand of DNA in stem cells. ArticleCASPubMed Google Scholar
Tsao, J. L. et al. Genetic reconstruction of individual colorectal tumor histories. Proc. Natl Acad. Sci. USA97, 1236–1241 (2000). Uses phylogenetic methods to trace the common ancestor of microsatellite-unstable clones in colorectal cancer back to a date before an adenoma was detected. ArticleCASPubMedPubMed Central Google Scholar
Tsao, J. L. et al. Colorectal adenoma and cancer divergence. Evidence of multilineage progression. Am. J. Pathol.154, 1815–1824 (1999). ArticleCASPubMedPubMed Central Google Scholar
Michor, F., Iwasa, Y. & Nowak, M. A. Dynamics of cancer progression. Nature Rev. Cancer4, 197–205 (2004). ArticleCAS Google Scholar
Maley, C. C. et al. Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nature Genet.38, 468–473 (2006). Shows that genetic diversity measures from ecology and evolution predict progression to malignancy. ArticleCASPubMed Google Scholar
Maley, C. C. & Reid, B. J. Natural selection in neoplastic progression of Barrett's esophagus. Semin. Cancer Biol.15, 474–483 (2005). ArticleCASPubMed Google Scholar
Maley, C. C., Reid, B. J. & Forrest, S. Cancer prevention strategies that address the evolutionary dynamics of neoplastic cells: simulating benign cell boosters and selection for chemosensitivity. Cancer Epidemiol. Biomarkers Prev.13, 1375–1384 (2004). Uses computational models to develop prevention and therapeutic strategies for avoiding the evolution of resistance. PubMed Google Scholar
Tomlinson, I. P. M. Game-theory models of interactions between tumour cells. Euro. J. Cancer33, 1495–1500 (1997). ArticleCAS Google Scholar
Gatenby, R. A. & Vincent, T. L. Application of quantitative models from population biology and evolutionary game theory to tumor therapeutic strategies. Mol. Cancer Ther.2, 919–927 (2003). Describes the use of evolutionary and ecological models to develop new approaches to therapy. CASPubMed Google Scholar
Gonzalez-Garcia, I., Sole, R. V. & Costa, J. Metapopulation dynamics and spatial heterogeneity in cancer. Proc. Natl Acad. Sci. USA99, 13085–13089 (2002). Shows genetic heterogeneity within a neoplasm, and how clones can be intertwined in complex patterns. ArticleCASPubMedPubMed Central Google Scholar
Brash, D. E., Zhang, W., Grossman, D. & Takeuchi, S. Colonization of adjacent stem cell compartments by mutant keratinocytes. Semin. Cancer Biol.15, 97–102 (2005). ArticleCASPubMed Google Scholar
Braakhuis, B. J., Leemans, C. R. & Brakenhoff, R. H. Expanding fields of genetically altered cells in head and neck squamous carcinogenesis. Semin. Cancer Biol.15, 113–120 (2005). ArticlePubMed Google Scholar
Maley, C. C. et al. Selectively advantageous mutations and hitchhikers in neoplasms: p16 lesions are selected in Barrett's esophagus. Cancer Res.64, 3414–3427 (2004). ArticleCASPubMed Google Scholar
Franklin, W. A. et al. Widely dispersed p53 mutation in respiratory epithelium. A novel mechanism for field car-cinogenesis. J. Clin. Invest.100, 2133–2137 (1997). Shows that neoplastic clones can spread over large surface areas. ArticleCASPubMedPubMed Central Google Scholar
Castro, M. A., Onsten, T. T., de Almeida, R. M. & Moreira, J. C. Profiling cytogenetic diversity with entropy-based karyotypic analysis. J. Theor. Biol.234, 487–495 (2005). ArticleCASPubMed Google Scholar
Keller, L. K. Levels of Selection in Evolution (Princeton University Press, Princeton, New Jersey, 1999). Google Scholar
Leroi, A. M., Koufopanou, V. & Burt, A. Cancer selection. Nature Rev. Cancer3, 226–231 (2003). ArticleCAS Google Scholar
Weinstein, B. S. & Ciszek, D. The reserve-capacity hypothesis: evolutionary origins and modern implications of the trade-off between tumor-suppression and tissue-repair. Exp. Gerontol.37, 615–627 (2002). ArticleCASPubMed Google Scholar
Frank, S. A. & Nowak, M. A. Problems of somatic mutation and cancer. Bioessays26, 291–299 (2004). ArticleCASPubMed Google Scholar
Campisi, J. Aging, tumor suppression and cancer: high wire-act! Mech. Ageing Dev.126, 51–58 (2005). ArticleCASPubMed Google Scholar
Summers, K., da Silva, J. & Farwell, M. Intragenomic conflict and cancer. Med. Hypotheses59, 170–179 (2002). ArticleCASPubMed Google Scholar
Roth, M. J. et al. Genetic progression and heterogeneity associated with the development of esophageal squamous cell carcinoma. Cancer Res.61, 4098–4104 (2001). CASPubMed Google Scholar
Stoler, D. L. et al. The onset and extent of genomic instability in sporadic colorectal tumor progression. Proc. Natl Acad. Sci. USA96, 15121–15126 (1999). Measures the frequency of genomic alterations in colorectal cancer at approximately 11,000 per clone. ArticleCASPubMedPubMed Central Google Scholar
Sole, R. V. & Deisboeck, T. S. An error catastrophe in cancer? J. Theor. Biol.228, 47–54 (2004). ArticlePubMed Google Scholar
Breivik, J. The evolutionary origin of genetic instability in cancer development. Semin. Cancer Biol.15, 51–60 (2005). ArticleCASPubMed Google Scholar
Michor, F., Iwasa, Y., Vogelstein, B., Lengauer, C. & Nowak, M. A. Can chromosomal instability initiate tumorigenesis? Semin. Cancer Biol.15, 43–49 (2005). ArticleCASPubMed Google Scholar
Rajagopalan, H., Nowak, M. A., Vogelstein, B. & Lengauer, C. The significance of unstable chromosomes in colorectal cancer. Nature Rev. Cancer3, 695–701 (2003). ArticleCAS Google Scholar
Gray, M. W., Burger, G. & Lang, B. F. Mitochondrial evolution. Science283, 1476–1481 (1999). ArticleCASPubMed Google Scholar
Baylin, S. B. & Herman, J. G. DNA hypermethylation in tumorigenesis- epigenetics joins genetics. Trends Genet.16, 168–174 (2000). CASPubMed Google Scholar
Feinberg, A. P., Ohlsson, R. & Henikoff, S. The epigenetic progenitor origin of human cancer. Nature Rev. Genet.7, 21–33 (2006). ArticleCASPubMed Google Scholar
Weisenberger, D. J. et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nature Genet.38, 787–793 (2006). ArticleCASPubMed Google Scholar
Horie-Inoue, K. & Inoue, S. Epigenetic and proteolytic inactivation of 14–3-3sigma in breast and prostate cancers. Semin. Cancer Biol.16, 235–239 (2006). ArticleCASPubMed Google Scholar
Albertini, R. J., Nicklas, J. A., O'Neill, J. P. & Robison, S. H. In vivo somatic mutations in humans: measurement and analysis. Annu. Rev. Genet.24, 305–326 (1990). ArticleCASPubMed Google Scholar
Araten, D. J. et al. A quantitative measurement of the human somatic mutation rate. Cancer Res.65, 8111–8117 (2005). ArticleCASPubMed Google Scholar
Sniegowski, P. D., Gerrish, P. J., Johnson, T. & Shaver, A. The evolution of mutation rates: separating causes from consequences. Bioessays22, 1057–1066 (2000). ArticleCASPubMed Google Scholar
Sniegowski, P. D., Gerrish, P. J. & Lenski, R. E. Evolution of high mutation rates in experimental populations of E. coli. Nature387, 703–705 (1997). ArticleCASPubMed Google Scholar
Dyer, M. A. & Bremner, R. The search for the retinoblastoma cell of origin. Nature Rev. Cancer5, 91–101 (2005). Article Google Scholar
Renan, M. J. How many mutations are required for tumorigenesis? Implications from human cancer data. Mol. Carcinogenesis7, 139–146 (1993). ArticleCAS Google Scholar
Loeb, L. A. Mutator phenotype may be required for multistage carcinogenesis. Cancer Res.51, 3075–3079 (1991). Shows that the background mutation rate is not adequate to explain carcinogenesis, and proposes that genetic instability might be necessary for cancer to develop. CASPubMed Google Scholar
Tomlinson, I. & Bodmer, W. Selection, the mutation rate and cancer: ensuring that the tail does not wag the dog. Nature Med.5, 11–12 (1999). ArticleCASPubMed Google Scholar
Moolgavkar, S. H. & Luebeck, E. G. Multistage carcinogenesis and the incidence of human cancer. Genes Chromosomes Cancer38, 302–306 (2003). ArticleCASPubMed Google Scholar
Loeb, K. R. & Loeb, L. A. Significance of multiple muta-tions in cancer. Carcinogenesis21, 379–385 (2000). ArticleCASPubMed Google Scholar
Maley, C. C. et al. The combination of genetic instability and clonal expansion predicts progression to esophageal adenocarcinoma. Cancer Res.64, 7629–7633 (2004). ArticleCASPubMed Google Scholar
Huntly, B. J. & Gilliland, D. G. Leukaemia stem cells and the evolution of cancer-stem-cell research. Nature Rev. Cancer5, 311–321 (2005). ArticleCAS Google Scholar
Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA100, 3983–3988 (2003). ArticleCASPubMedPubMed Central Google Scholar
Collins, A. T., Berry, P. A., Hyde, C., Stower, M. J. & Maitland, N. J. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res.65, 10946–10951 (2005). ArticleCASPubMed Google Scholar
Sell, S. Cellular origin of cancer: dedifferentiation or stem cell maturation arrest? Environ. Health Perspect.101, 15–26 (1993). ArticlePubMedPubMed Central Google Scholar
Potten, C. S., Booth, C. & Pritchard, D. M. The intestinal epithelial stem cell: the mucosal governor. Int. J. Exp. Pathol.78, 219–243 (1997). ArticleCASPubMedPubMed Central Google Scholar
Michor, F., Frank, S. A., May, R. M., Iwasa, Y. & Nowak, M. A. Somatic selection for and against cancer. J. Theor. Biol.225, 377–382 (2003). ArticleCASPubMed Google Scholar
Frank, S. A. & Nowak, M. A. Cell biology: developmental predisposition to cancer. Nature422, 494 (2003). ArticleCASPubMed Google Scholar
Meza, R., Luebeck, E. G. & Moolgavkar, S. H. Gestational mutations and carcinogenesis. Math. Biosci.197, 188–210 (2005). ArticleCASPubMed Google Scholar
Maynard Smith, J. & Haigh, J. The hitch-hiking effect of a favorable gene. Genet. Res.231, 1114–1116 (1974). Google Scholar
Lewontin, R. C. The Genetic Basis of Evolutionary Change (Columbia University Press, New York, 1970). Google Scholar
Braakhuis, B. J., Tabor, M. P., Kummer, J. A., Leemans, C. R. & Brakenhoff, R. H. A genetic explanation of Slaughter's concept of field cancerization: evidence and clinical implications. Cancer Res.63, 1727–1730 (2003). CASPubMed Google Scholar
Chao, E. C. & Lipkin, S. M. Molecular models for the tissue specificity of DNA mismatch repair-deficient carcinogenesis. Nucleic Acids Res.34, 840–852 (2006). ArticleCASPubMedPubMed Central Google Scholar
Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell61, 759–767 (1990). ArticleCASPubMed Google Scholar
Desper, R. et al. Inferring tree models for oncogenesis from comparative genome hybridization data. J. Comput. Biol. 37–51 (1999).
Smith, G. et al. Mutations in APC, Kirsten-ras, and p53 — alternative genetic pathways to colorectal cancer. Proc. Natl Acad. Sci. USA99, 9433–9438 (2002). ArticleCASPubMedPubMed Central Google Scholar
Kobayashi, S. et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl. J. Med.352, 786–792 (2005). ArticleCASPubMed Google Scholar
Gorre, M. E. et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science293, 876–880 (2001). ArticleCASPubMed Google Scholar
Wang, T. L. et al. Digital karyotyping identifies thymidylate synthase amplification as a mechanism of resistance to 5-fluorouracil in metastatic colorectal cancer patients. Proc. Natl Acad. Sci. USA101, 3089–3094 (2004). ArticleCASPubMedPubMed Central Google Scholar
Donnenberg, V. S. & Donnenberg, A. D. Multiple drug resistance in cancer revisited: the cancer stem cell hypothesis. J. Clin. Pharmacol.45, 872–877 (2005). ArticleCASPubMed Google Scholar
Luria, S. E. & Delbruck, M. Mutations of bacteria from virus sensitivity to virus resistance. Genetics28, 491–511 (1943). CASPubMedPubMed Central Google Scholar
Komarova, N. Stochastic modeling of drug resistance in cancer. J. Theor. Biol.239, 351–366 (2006). ArticleCASPubMed Google Scholar
Roche-Lestienne, C. & Preudhomme, C. Mutations in the ABL kinase domain pre-exist the onset of imatinib treatment. Semin. Hematol.40, 80–82 (2003). ArticleCASPubMed Google Scholar
Knudson, A. G. Jr. Mutation and cancer: statistical study of retinoblastoma. Proc. Natl Acad. Sci. USA68, 820–823 (1971). Uses a Poisson model to deduce the requirement of two mutations to generate retinoblastoma. ArticlePubMedPubMed Central Google Scholar
Etzioni, R. et al. The case for early detection. Nature Rev. Cancer3, 1–10 (2003). ArticleCAS Google Scholar
Chabner, B. A. & Roberts, T. G. Jr. Timeline: chemotherapy and the war on cancer. Nature Rev. Cancer5, 65–72 (2005). ArticleCAS Google Scholar
Komarova, N. L. & Wodarz, D. Evolutionary dynamics of mutator phenotypes in cancer: implications for chemotherapy. Cancer Res.63, 6635–6642 (2003). CASPubMed Google Scholar
Suiter, A. M., Banziger, O. & Dean, A. M. Fitness consequences of a regulatory polymorphism in a seasonal environment. Proc. Natl Acad. Sci. USA100, 12782–12786 (2003). ArticleCASPubMedPubMed Central Google Scholar
Kim, J. J. & Tannock, I. F. Repopulation of cancer cells during therapy: an important cause of treatment failure. Nature Rev. Cancer5, 516–525 (2005). ArticleCAS Google Scholar
Kern, W. & Estey, E. H. High-dose cytosine arabinoside in the treatment of acute myeloid leukemia: review of three randomized trials. Cancer107, 116–124 (2006). ArticleCASPubMed Google Scholar
Rubin, C. E. et al. DNA aneuploidy in colonic biopsies predicts future development of dysplasia in ulcerative colitis. Gastroenterology103, 1611–1620 (1992). ArticleCASPubMed Google Scholar
Brentnall, T. A. et al. Mutations in the p53 gene: an early marker of neoplastic progression in ulcerative colitis. Gastroenterology107, 369–378 (1994). ArticleCASPubMed Google Scholar
van Oijen, M. G. & Slootweg, P. J. Oral field cancerization: carcinogen-induced independent events or micrometastatic deposits? Cancer Epidemiol. Biomarkers Prev.9, 249–256 (2000). CASPubMed Google Scholar
Hunter, K. W. Allelic diversity in the host genetic background may be an important determinant in tumor metastatic dissemination. Cancer Lett.200, 97–105 (2003). ArticleCASPubMed Google Scholar
Bernards, R. & Weinberg, R. A. Bernards and Weinberg reply. Nature419, 560 (2002). ArticleCAS Google Scholar
Fidler, I. J. & Kripke, M. L. Metastasis results from preexisting variant cells within a malignant tumor. Science197, 893–895 (1977). ArticleCASPubMed Google Scholar
Futuyma, D. J. Evolutionary Biology (Sinauer Associates Inc., Sunderland, Massachusetts, 1998). Google Scholar
Paszek, M. J. et al. Tensional homeostasis and the malignant phenotype. Cancer Cell8, 241–254 (2005). ArticleCASPubMed Google Scholar
Vaupel, P. & Mayer, A. Hypoxia and anemia: effects on tumor biology and treatment resistance. Transfus. Clin. Biol.12, 5–10 (2005). ArticlePubMed Google Scholar
Cadet, C., Ferriere, R., Metz, J. A. & van Baalen, M. The evolution of dispersal under demographic stochasticity. Am. Nat.162, 427–441 (2003). ArticlePubMed Google Scholar
Fidler, I. J. The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nature Rev. Cancer3, 453–458 (2003). ArticleCAS Google Scholar
Kolar, C. S. & Lodge, D. M. Progress in invasion biology: predicting invaders. Trends Ecol. Evol.16, 199–204 (2001). ArticlePubMed Google Scholar
Peterson, A. T. Predicting the geography of species' invasions via ecological niche modeling. Q. Rev. Biol.78, 419–433 (2003). ArticlePubMed Google Scholar
Shea, K. & Chesson, P. Community ecology theory as a framework for biological invasions. Trends Ecol. Evol.17, 170–176 (2002). Article Google Scholar
Mable, B. K. Breaking down taxonomic barriers in polyploidy research. Trends Plant Sci.8, 582–590 (2003). ArticleCASPubMed Google Scholar
Otto, S. P. & Whitton, J. Polyploid incidence and evolution. Annu. Rev. Genet.34, 401–437 (2000). ArticleCASPubMed Google Scholar
Imhof, M. & Schlotterer, C. E. coli microcosms indicate a tight link between predictability of ecosystem dynamics and diversity. PLoS Genet.2, e103 (2006). ArticleCASPubMedPubMed Central Google Scholar
Heppner, G., Miller, B., Cooper, D. N. & Miller, F. R. in Cell Biology of Breast Cancer (eds McGrath, C. M., Brennan, M. J. & Rich, M. A.) 161–172 (Academic Press, New York, 1980). Google Scholar
Guba, M. et al. A primary tumor promotes dormancy of solitary tumor cells before inhibiting angiogenesis. Cancer Res.61, 5575–5579 (2001). CASPubMed Google Scholar
Miller, B. E., Miller, F. R., Leith, J. & Heppner, G. H. Growth interaction in vivo between tumor subpopulations derived from a single mouse mammary tumor. Cancer Res.40, 3977–3981 (1980). Shows that different clones in a neoplasm can affect each other's growth in complex ways. CASPubMed Google Scholar
Caignard, A., Martin, M. S., Michel, M. F. & Martin, F. Interaction between two cellular subpopulations of a rat colonic carcinoma when inoculated to the syngeneic host. Int. J. Cancer36, 273–279 (1985). ArticleCASPubMed Google Scholar
Bach, L. A., Bentzen, S. M., Alsner, J. & Christiansen, F. B. An evolutionary-game model of tumour-cell interactions: possible relevance to gene therapy. Eur. J. Cancer37, 2116–2120 (2001). ArticleCASPubMed Google Scholar
Gatenby, R. A. & Vincent, T. L. An evolutionary model of carcinogenesis. Cancer Res.63, 6212–6220 (2003). CASPubMed Google Scholar
Nagy, J. D. Competition and natural selection in a mathematical model of cancer. Bull. Math. Biol.66, 663–687 (2004). ArticlePubMed Google Scholar
Uhr, J. W., Scheuermann, R. H., Street, N. E. & Vitetta, E. S. Cancer dormancy: opportunities for new therapeutic approaches. Nature Med.3, 505–509 (1997). ArticleCASPubMed Google Scholar
Mitteldorf, J. Chaotic population dynamics and the evolution of aging. Evol. Ecol. Res.8, 561–574 (2006). Google Scholar
Travisano, M. & Velicer, G. J. Strategies of microbial cheater control. Trends Microbiol.12, 72–78 (2004). ArticleCASPubMed Google Scholar
Turner, P. E. Parasitism between co-infecting bacteriophages. Adv. Ecol. Res.37, 309–332 (2005). Article Google Scholar
Velicer, G. J., Kroos, L. & Lenski, R. E. Developmental cheating in the social bacterium Myxococcus xanthus. Nature404, 598–601 (2000). ArticleCASPubMed Google Scholar
Jouanneau, J., Moens, G., Bourgeois, Y., Poupon, M. F. & Thiery, J. P. A minority of carcinoma cells producing acidic fibroblast growth factor induces a community effect for tumor progression. Proc. Natl Acad. Sci. USA91, 286–290 (1994). ArticleCASPubMedPubMed Central Google Scholar
Axelrod, R., Axelrod, D. E. & Pienta, K. J. Evolution of cooperation among tumor cells. Proc. Natl Acad. Sci. USA103, 13474–13479 (2006). ArticleCASPubMedPubMed Central Google Scholar
Mueller, M. M. & Fusenig, N. E. Friends or foes- bipolar effects of the tumour stroma in cancer. Nature Rev. Cancer4, 839–849 (2004). ArticleCAS Google Scholar
Shao, Z. M., Nguyen, M. & Barsky, S. H. Human breast carcinoma desmoplasia is PDGF initiated. Oncogene19, 4337–4345 (2000). ArticleCASPubMed Google Scholar
Tlsty, T. D. Stromal cells can contribute oncogenic signals. Semin. Cancer Biol.11, 97–104 (2001). ArticleCASPubMed Google Scholar
Fukino, K. et al. Combined total genome loss of heterozygosity scan of breast cancer stroma and epithelium reveals multiplicity of stromal targets. Cancer Res.64, 7231–7236 (2004). Shows that tumour stroma also has genetic lesions, and so must be co-evolving with the epithelium. ArticleCASPubMed Google Scholar
Paterson, R. F. et al. Molecular genetic alterations in the laser-capture-microdissected stroma adjacent to bladder carcinoma. Cancer98, 1830–1836 (2003). ArticleCASPubMed Google Scholar
Ishiguro, K., Yoshida, T., Yagishita, H., Numata, Y. & Okayasu, T. Epithelial and stromal genetic instability contributes to genesis of colorectal adenomas. Gut55, 695–702 (2006). ArticleCASPubMedPubMed Central Google Scholar
Kenny, P. A. & Bissell, M. J. Tumor reversion: correction of malignant behavior by microenvironmental cues. Int. J. Cancer107, 688–695 (2003). CASPubMedPubMed Central Google Scholar
Mintz, B. & Illmensee, K. Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc. Natl Acad. Sci. USA72, 3585–3589 (1975). ArticleCASPubMedPubMed Central Google Scholar
Miller, F. R. & Heppner, G. H. Cellular interactions in metastasis. Cancer Metastasis Rev.9, 21–34 (1990). ArticleCASPubMed Google Scholar
Kuperwasser, C. et al. Reconstruction of functionally normal and malignant human breast tissues in mice. Proc. Natl Acad. Sci. USA101, 4966–4971 (2004). ArticleCASPubMedPubMed Central Google Scholar
Bhowmick, N. A. et al. TGF-β signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science303, 848–851 (2004). ArticleCASPubMed Google Scholar
Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell121, 335–348 (2005). ArticleCASPubMed Google Scholar
Roxburgh, S. H., Shea, K. & Wilson, J. B. The intermediate disturbance hypothesis: patch dynamics and mechanisms of species coexistence. Ecology85, 359–371 (2004). Article Google Scholar
Bjerkvig, R., Tysnes, B. B., Aboody, K. S., Najbauer, J. & Terzis, A. J. Opinion: the origin of the cancer stem cell: current controversies and new insights. Nature Rev. Cancer5, 899–904 (2005). ArticleCAS Google Scholar
Boyer, B., Valles, A. M. & Edme, N. Induction and regulation of epithelial-mesenchymal transitions. Biochem. Pharmacol.60, 1091–1099 (2000). ArticleCASPubMed Google Scholar
Elena, S. F. & Lenski, R. E. Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nature Rev. Genet.4, 457–469 (2003). ArticleCASPubMed Google Scholar
Spencer, S. L., Gerety, R. A., Pienta, K. J. & Forrest, S. Modeling somatic evolution in tumorigenesis. PLoS Comput. Biol.2, e108 (2006). ArticleCASPubMedPubMed Central Google Scholar
Drummond, A., Forsberg, R. & Rodrigo, A. G. The inference of stepwise changes in substitution rates using serial sequence samples. Mol. Biol. Evol.18, 1365–1371 (2001). ArticleCASPubMed Google Scholar
Harper, D. M. et al. Sustained efficacy up to 4.5 years of a bivalent L1 virus-like particle vaccine against human papillomavirus types 16 and 18: follow-up from a randomised control trial. Lancet367, 1247–1255 (2006). ArticleCASPubMed Google Scholar
Jakobisiak, M., Lasek, W. & Golab, J. Natural mechanisms protecting against cancer. Immunol. Lett.90, 103–122 (2003). ArticleCASPubMed Google Scholar
Michor, F., Nowak, M. A., Frank, S. A. & Iwasa, Y. Stochastic elimination of cancer cells. Proc. Biol. Sci.270, 2017–2024 (2003). ArticlePubMedPubMed Central Google Scholar
Torres-Montaner, A. & Hughes, D. A hypothetical anti-neoplastic mechanism associated to reserve cells. J. Theor. Biol.231, 239–248 (2004). ArticlePubMed Google Scholar
Frank, S. A., Iwasa, Y. & Nowak, M. A. Patterns of cell division and the risk of cancer. Genetics163, 1527–1532 (2003). PubMedPubMed Central Google Scholar
Komarova, N. L. & Cheng, P. Epithelial tissue architecture protects against cancer. Math. Biosci.200, 90–117 (2006). ArticlePubMed Google Scholar
Nowak, M. A., Michor, F. & Iwasa, Y. The linear process of somatic evolution. Proc. Natl Acad. Sci. USA100, 14966–14969 (2003). Uses a mathematical model to analyse the evolutionary dynamics of cells in structured tissues. ArticleCASPubMedPubMed Central Google Scholar
Frank, S. A. Genetic predisposition to cancer — insights from population genetics. Nature Rev. Genet.5, 764–772 (2004). ArticleCASPubMed Google Scholar
Fleming, M. A., Potter, J. D., Ramirez, C. J., Ostrander, G. K. & Ostrander, E. A. Understanding missense mutations in the BRCA1 gene: an evolutionary approach. Proc. Natl Acad. Sci. USA100, 1151–1156 (2003). ArticleCASPubMedPubMed Central Google Scholar
Slatkin, M. & Rannala, B. Estimating allele age. Annu. Rev. Genomics Hum. Genet.1, 225–249 (2000). ArticleCASPubMed Google Scholar
Deng, C. X. BRCA1: cell cycle checkpoint, genetic instability, DNA damage response and cancer evolution. Nucleic Acids Res.34, 1416–1426 (2006). ArticleCASPubMedPubMed Central Google Scholar
Jernstrom, H., Johannsson, O., Borg, A., Ivarsson, H. & Olsson, H. BRCA1-positive patients are small for gestational age compared with their unaffected relatives. Eur. J. Cancer34, 368–371 (1998). ArticleCASPubMed Google Scholar
Smith, T. M. et al. Complete genomic sequence and analysis of 117 kb of human DNA containing the gene BRCA1. Genome Res.6, 1029–1049 (1996). ArticleCASPubMed Google Scholar
Pavlicek, A. et al. Evolution of the tumor suppressor BRCA1 locus in primates: implications for cancer pre-disposition. Hum. Mol. Genet.13, 2737–2751 (2004). ArticleCASPubMed Google Scholar
Summers, K. & Crespi, B. Cadherins in maternal–foetal interactions: red queen with a green beard? Proc. Biol. Sci.272, 643–649 (2005). ArticleCASPubMedPubMed Central Google Scholar
Crespi, B. J. & Summers, K. Positive selection in the evolution of cancer. Biol. Rev. Camb. Philos. Soc.81, 407–424 (2006). ArticlePubMed Google Scholar
Hernandez, L., Kozlov, S., Piras, G. & Stewart, C. L. Paternal and maternal genomes confer opposite effects on proliferation, cell-cycle length, senescence, and tumor formation. Proc. Natl Acad. Sci. USA100, 13344–13349 (2003). ArticleCASPubMedPubMed Central Google Scholar
Moran, P. A. P. Random processes in genetics. Proc. Camb. Phil. Soc.54, 60–71 (1958). Article Google Scholar
Ewens, W. J. Mathematical Population Genetics (Springer-Verlag, New York, 2004). Book Google Scholar
Reid, B. J. et al. Barrett's esophagus: ordering the events that lead to cancer. Euro. J. Cancer Prev.5 (Suppl. 2), 57–65 (1996). Shows how spatial information can be used to infer dependencies between genetic alterations in carcinogenesis. Article Google Scholar
Wang, G. Q. et al. Histological precursors of oesophageal squamous cell carcinoma: results from a 13 year prospective follow up study in a high risk population. Gut54, 187–192 (2005). ArticlePubMedPubMed Central Google Scholar
Reid, B. J. et al. Predictors of progression in Barrett's esophagus II: baseline 17p (p53) loss of heterozygosity identifies a patient subset at increased risk for neoplastic progression. Am. J. Gastroenterol.96, 2839–2848 (2001). ArticleCASPubMedPubMed Central Google Scholar
Dolan, K., Morris, A. I., Gosney, J. R., Field, J. K. & Sutton, R. Loss of heterozygosity on chromosome 17p predicts neoplastic progression in Barrett's esophagus. J. Gastroenterol. Hepatol.18, 683–689 (2003). ArticleCASPubMed Google Scholar
Teodori, L. et al. DNA/protein flow cytometry as a predictive marker of malignancy in dysplasia-free Barrett's esophagus: thirteen-year follow-up study on a cohort of patients. Cytometry34, 257–263 (1998). ArticleCASPubMed Google Scholar
Lee, J. J. et al. Predicting cancer development in oral leukoplakia: ten years of translational research. Clin. Cancer Res.6, 1702–1710 (2000). CASPubMed Google Scholar
Rosin, M. P. et al. Use of allelic loss to predict malignant risk for low-grade oral epithelial dysplasia. Clin. Cancer Res.6, 357–362 (2000). CASPubMed Google Scholar
Befrits, R., Hammarberg, C., Rubio, C., Jaramillo, E. & Tribukait, B. DNA aneuploidy and histologic dysplasia in long-standing ulcerative colitis. A 10-year follow-up study. Dis. Colon. Rectum37, 313–319; discussion 319–320 (1994). ArticleCASPubMed Google Scholar
Lofberg, R., Brostrom, O., Karlen, P., Tribukait, B. & Ost, A. Colonoscopic surveillance in long-standing total ulcerative colitis-a 15-year follow-up study. Gastroenterology4, 1021–1021 (1990). Article Google Scholar
Wong, B. C. et al. Helicobacter pylori eradication to prevent gastric cancer in a high-risk region of China: a randomized controlled trial. JAMA291, 187–194 (2004). ArticleCASPubMed Google Scholar
Thompson, I. M. et al. The influence of finasteride on the development of prostate cancer. N. Engl. J. Med.349, 215–224 (2003). ArticleCASPubMed Google Scholar
Heppner, G. H., Miller, B. E. & Miller, F. R. Tumor subpopulation interactions in neoplasms. Biochim. Biophys. Acta695, 215–226 (1983). CASPubMed Google Scholar