Ames, B. N., Gold, L. S. & Willett, W. C. The causes and prevention of cancer. Proc. Natl Acad. Sci. USA92, 5258–5265 (1995). This paper describes the main environmental causes of cancer and the molecular mechanisms by which they function. ArticleCASPubMedPubMed Central Google Scholar
ACS. Cancer Facts and FIGS 2005. American Cancer Society, 1–64 (2005).
De Marzo, A. M. et al. Pathological and molecular mechanisms of prostate carcinogenesis: implications for diagnosis, detection, prevention, and treatment. J. Cell Biochem.91, 459–477 (2004). ArticleCASPubMed Google Scholar
Nelson, W. G., De Marzo, A. M. & Isaacs, W. B. Prostate cancer. N. Engl. J. Med.349, 366–381 (2003). ArticleCASPubMed Google Scholar
Platz, E. A. & De Marzo, A. M. Epidemiology of inflammation and prostate cancer. J. Urol.171, S36–S40 (2004). ArticlePubMed Google Scholar
Gonzalgo, M. L. & Isaacs, W. B. Molecular pathways to prostate cancer. J. Urol.170, 2444–2452 (2003). ArticleCASPubMed Google Scholar
Shand, R. L. & Gelmann, E. P. Molecular biology of prostate-cancer pathogenesis. Curr. Opin. Urol.16, 123–131 (2006). ArticlePubMed Google Scholar
Pihan, G. A., Wallace, J., Zhou, Y. & Doxsey, S. J. Centrosome abnormalities and chromosome instability occur together in pre-invasive carcinomas. Cancer Res.63, 1398–1404 (2003). CASPubMed Google Scholar
Meeker, A. K. Telomeres and telomerase in prostatic intraepithelial neoplasia and prostate cancer biology. Urol. Oncol.24, 122–130 (2006). ArticleCASPubMed Google Scholar
Bostwick, D. G. in Urologic Surgical Pathology (eds Bostwick, D. G. & Eble, J. N.) 423–456 (Mosby, St. Louis, 1997). Google Scholar
Hsing, A. W., Tsao, L. & Devesa, S. S. International trends and patterns of prostate cancer incidence and mortality. Int. J. Cancer85, 60–67 (2000). ArticleCASPubMed Google Scholar
Peto, J. Cancer epidemiology in the last century and the next decade. Nature411, 390–395 (2001). ArticleCASPubMed Google Scholar
McNeal, J. E., Redwine, E. A., Freiha, F. S. & Stamey, T. A. Zonal distribution of prostatic adenocarcinoma. Correlation with histologic pattern and direction of spread. Am. J. Surg. Pathol.12, 897–906 (1988). ArticleCASPubMed Google Scholar
Franks, L. M. Atrophy and hyperplasia in the prostate proper. J. Pathol. Bacteriol.68, 617–621 (1954). ArticleCASPubMed Google Scholar
McNeal, J. E. in Histology for Pathologists (ed. Sternberg, S. S.) 997–1017 (Lippincott-Raven, Philadelphia, 1997). This book chapter describes in detail the now well established zonal anatomy of the prostate. Google Scholar
De Marzo, A. M., Marchi, V. L., Epstein, J. I. & Nelson, W. G. Proliferative inflammatory atrophy of the prostate: implications for prostatic carcinogenesis. Am. J. Pathol.155, 1985–1992 (1999). ArticleCASPubMedPubMed Central Google Scholar
Rich, A. R. On the frequency of occurrence of occult carcinoma of the prostate. J. Urol.33, 215–223 (1934). Article Google Scholar
Feneley, M. R., Young, M. P., Chinyama, C., Kirby, R. S. & Parkinson, M. C. Ki-67 expression in early prostate cancer and associated pathological lesions. J. Clin. Pathol.49, 741–748 (1996). ArticleCASPubMedPubMed Central Google Scholar
Ruska, K. M., Sauvageot, J. & Epstein, J. I. Histology and cellular kinetics of prostatic atrophy. Am. J. Surg. Pathol.22, 1073–1077 (1998). ArticleCASPubMed Google Scholar
van Leenders, G. J. et al. Intermediate cells in human prostate epithelium are enriched in proliferative inflammatory atrophy. Am. J. Pathol.162, 1529–1537 (2003). ArticleCASPubMedPubMed Central Google Scholar
Montironi, R., Mazzucchelli, R. & Scarpelli, M. Precancerous lesions and conditions of the prostate: from morphological and biological characterization to chemoprevention. Ann. NY Acad. Sci.963, 169–184 (2002). ArticlePubMed Google Scholar
Nakayama, M. et al. Hypermethylation of the human GSTP1 CpG island is present in a subset of proliferative inflammatory atrophy lesions but not in normal or hyperplastic epithelium of the prostate: a detailed study using Laser-Capture Microdissection. Am. J. Pathol.163, 923–933 (2003). ArticleCASPubMedPubMed Central Google Scholar
Putzi, M. J. & De Marzo, A. M. Morphologic transitions between proliferative inflammatory atrophy and high-grade prostatic intraepithelial neoplasia. Urology56, 828–832 (2000). ArticleCASPubMed Google Scholar
Bethel, C. R. et al. Decreased NKX3. 1 protein expression in focal prostatic atrophy, prostatic intraepithelial neoplasia and adenocarcinoma: association with Gleason score and chromosome 8p deletion. Cancer Res.66, 10683–10690 (2006). ArticleCASPubMed Google Scholar
Abate-Shen, C. & Shen, M. M. Mouse models of prostate carcinogenesis. Trends Genet.18, S1–S5 (2002). ArticleCASPubMed Google Scholar
Pelouze, P. S. Gonorrhea in the male and female: a book for practitioners (W. B. Saunders Company, Philadelphia, 1935). Google Scholar
Poletti, F. et al. Isolation of Chlamydia trachomatis from the prostatic cells in patients affected by nonacute abacterial prostatitis. J. Urol.134, 691–693 (1985). ArticleCASPubMed Google Scholar
Gardner, W. A. Jr, Culberson, D. E. & Bennett, B. D. Trichomonas vaginalis in the prostate gland. Arch. Pathol. Lab. Med.110, 430–432 (1986). PubMed Google Scholar
Thomson, L. Syphilis of the prostate. Am. J. Syphilis4, 323–341 (1920). Google Scholar
Cohen, R. J., Shannon, B. A., McNeal, J. E., Shannon, T. & Garrett, K. L. Propionibacterium acnes associated with inflammation in radical prostatectomy specimens: a possible link to cancer evolution? J. Urol.173, 1969–1974 (2005). ArticlePubMed Google Scholar
Bushman, W. in Prostatic Diseases (ed. Lepor, H.) 550–557 (W. B. Saunders Company, Philadelphia, 2000). Google Scholar
Handsfield, H. H., Lipman, T. O., Harnisch, J. P., Tronca, E. & Holmes, K. K. Asymptomatic gonorrhea in men. Diagnosis, natural course, prevalence and significance. N. Engl. J. Med.290, 117–123 (1974). ArticleCASPubMed Google Scholar
Strickler, H. D. & Goedert, J. J. Sexual behavior and evidence for an infectious cause of prostate cancer. Epidemiol Rev.23, 144–151 (2001). ArticleCASPubMed Google Scholar
Zambrano, A., Kalantari, M., Simoneau, A., Jensen, J. L. & Villarreal, L. P. Detection of human polyomaviruses and papillomaviruses in prostatic tissue reveals the prostate as a habitat for multiple viral infections. Prostate53, 263–276 (2002). ArticleCASPubMed Google Scholar
Samanta, M., Harkins, L., Klemm, K., Britt, W. J. & Cobbs, C. S. High prevalence of human cytomegalovirus in prostatic intraepithelial neoplasia and prostatic carcinoma. J. Urol.170, 998–1002 (2003). ArticlePubMed Google Scholar
Riley, D. E., Berger, R. E., Miner, D. C. & Krieger, J. N. Diverse and related 16S rRNA-encoding DNA sequences in prostate tissues of men with chronic prostatitis. J. Clin. Microbiol.36, 1646–1652 (1998). ArticleCASPubMedPubMed Central Google Scholar
Urisman, A. et al. Identification of a novel Gammaretrovirus in prostate tumors of patients homozygous for R462Q RNASEL variant. PLoS Pathog.2, e25 (2006). This study used a new gene chip containing all known viral nucleic acids to identify a new virus in the prostate. Only men with inherited inactiveRNASELalleles were at a high risk of harbouring the virus. ArticlePubMedPubMed CentralCAS Google Scholar
Platz, E. A. et al. Nonsteroidal anti-inflammatory drugs and risk of prostate cancer in the Baltimore Longitudinal Study of Aging. Cancer Epidemiol. Biomarkers Prev.14, 390–396 (2005). ArticleCASPubMed Google Scholar
Mahmud, S., Franco, E. & Aprikian, A. Prostate cancer and use of nonsteroidal anti-inflammatory drugs: systematic review and meta-analysis. Br. J. Cancer90, 93–99 (2004). ArticleCASPubMedPubMed Central Google Scholar
Chan, J. M., Feraco, A., Shuman, M. & Hernandez-Diaz, S. The epidemiology of prostate cancer — with a focus on nonsteroidal anti-inflammatory drugs. Hematol. Oncol. Clin. North Am.20, 797–809 (2006). ArticlePubMed Google Scholar
Jacobs, E. J. et al. A large cohort study of aspirin and other nonsteroidal anti-inflammatory drugs and prostate cancer incidence. J. Natl Cancer Inst.97, 975–980 (2005). ArticlePubMed Google Scholar
Dennis, L. K., Lynch, C. F. & Torner, J. C. Epidemiologic association between prostatitis and prostate cancer. Urology60, 78–83 (2002). ArticlePubMed Google Scholar
Sarma, A. V. et al. Sexual behavior, sexually transmitted diseases and prostatitis: the risk of prostate cancer in black men. J. Urol.176, 1108–1113 (2006). ArticlePubMed Google Scholar
Sutcliffe, S. et al. Gonorrhea, syphilis, clinical prostatitis, and the risk of prostate cancer. Cancer Epidemiol. Biomarkers Prev.15, 2160–2166 (2006). ArticlePubMed Google Scholar
Nickel, J. C. et al. Consensus development of a histopathological classification system for chronic prostatic inflammation. BJU Int.87, 797–805 (2001). ArticleCASPubMed Google Scholar
Feigl, P. et al. Design of the Prostate Cancer Prevention Trial (PCPT). Control Clin. Trials16, 150–163 (1995). ArticleCASPubMed Google Scholar
Kirby, R. S., Lowe, D., Bultitude, M. I. & Shuttleworth, K. E. Intra-prostatic urinary reflux: an aetiological factor in abacterial prostatitis. Br. J. Urol.54, 729–731 (1982). ArticleCASPubMed Google Scholar
Persson, B. E. & Ronquist, G. Evidence for a mechanistic association between nonbacterial prostatitis and levels of urate and creatinine in expressed prostatic secretion. J. Urol.155, 958–960 (1996). ArticleCASPubMed Google Scholar
Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature440, 237–241 (2006). This paper presented genetic evidence that uric acid crystals can activate the inflammasome, and therefore produce a potent inflammatory response. ArticleCASPubMed Google Scholar
Drachenberg, C. B. & Papadimitriou, J. C. Prostatic corpora amylacea and crystalloids: similarities and differences on ultrastructural and histochemical studies. J. Submicrosc. Cytol. Pathol.28, 141–150 (1996). CASPubMed Google Scholar
Gardner, W. A. & Bennett, B. D. in Pathology and pathobiology of the urinary bladder and prostate (eds Weinstein, R. S. & Garnder, W. A.) 129–148 (Williams and Wilkens, Baltimore, 1992). Google Scholar
Meares, E. M. Jr. Infection stones of prostate gland. Laboratory diagnosis and clinical management. Urology4, 560–566 (1974). ArticlePubMed Google Scholar
Joachim, H. La lithiase prostatique peut-elle etre consideree comme un facteur cancerogene? Urologia (Treviso)28, 1–11 (1961). Google Scholar
Cristol, D. S. & Emmett, J. L. Incidence of coincident prostatic calculi, prostatic hyperplasia and carcinoma of prostate gland. JAMA124, 646–652 (1944). Article Google Scholar
Sondergaard, G., Vetner, M. & Christensen, P. O. Prostatic calculi. Acta Pathol. Microbiol. Immunol. Scand. [A]95, 141–145 (1987). CAS Google Scholar
Isaacs, J. T. Prostatic structure and function in relation to the etiology of prostatic cancer. Prostate4, 351–366 (1983). ArticleCASPubMed Google Scholar
Leitzmann, M. F., Platz, E. A., Stampfer, M. J., Willett, W. C. & Giovannucci, E. Ejaculation frequency and subsequent risk of prostate cancer. JAMA291, 1578–1586 (2004). This paper presents evidence that high ejaculation frequency, especially in young men, is related to reduced prostate cancer incidence, and therefore suggests that the 'flushing' of the prostate of harmful chemicals or infectious agents might reduce prostate cancer risk. ArticleCASPubMed Google Scholar
Chen, X., Zhao, J., Salim, S. & Garcia, F. U. Intraprostatic spermatozoa: zonal distribution and association with atrophy. Hum. Pathol.37, 345–351 (2006). ArticlePubMed Google Scholar
Giovannucci, E. et al. A prospective study of dietary fat and risk of prostate cancer. J. Natl Cancer Inst.85, 1571–1579 (1993). ArticleCASPubMed Google Scholar
Norrish, A. E. et al. Heterocyclic amine content of cooked meat and risk of prostate cancer. J. Natl Cancer Inst.91, 2038–2044 (1999). ArticleCASPubMed Google Scholar
Michaud, D. S. et al. A prospective study on intake of animal products and risk of prostate cancer. Cancer Causes Control12, 557–567 (2001). ArticleCASPubMed Google Scholar
Sugimura, T., Wakabayashi, K., Nakagama, H. & Nagao, M. Heterocyclic amines: Mutagens/carcinogens produced during cooking of meat and fish. Cancer Sci.95, 290–299 (2004). This paper reviews the intriguing discovery of highly mutagenic and carcinogenic compounds formed during the high-temperature cooking of meats. ArticleCASPubMed Google Scholar
Knize, M. G. & Felton, J. S. Formation and human risk of carcinogenic heterocyclic amines formed from natural precursors in meat. Nutr. Rev.63, 158–165 (2005). This paper reviews the discovery and significance of PhIP as the most abundant of the heterocyclic amines produced by high-temperature cooking of meats. ArticlePubMed Google Scholar
Inaguma, S. et al. High susceptibility of the ACI and spontaneously hypertensive rat (SHR) strains to 2-amino-1-methyl-6-phenylimidazo[4, 5-b]pyridine (PhIP) prostate carcinogenesis. Cancer Sc.i94, 974–979 (2003). ArticleCAS Google Scholar
Nakai, Y., Nelson, W. G. & De Marzo, A. M. The dietary charred meat carcinogen 2-amino-1-methyl-6-phenylimidazo[4, 5_b_]pyridine (PhIP) acts as both an initiator and tumor promoter in the rat ventral prostate. Cancer Res.67, 1378–1384 (2007). ArticleCASPubMed Google Scholar
Malaviya, R., Ikeda, T., Ross, E. & Abraham, S. N. Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-α. Nature381, 77–80 (1996). ArticleCASPubMed Google Scholar
Choo-Kang, B. S. et al. TNF-blocking therapies: an alternative mode of action? Trends Immunol.26, 518–522 (2005). ArticleCASPubMed Google Scholar
Araki, Y., Andoh, A., Fujiyama, Y. & Bamba, T. Development of dextran sulphate sodium-induced experimental colitis is suppressed in genetically mast cell-deficient Ws/Ws rats. Clin. Exp. Immunol.119, 264–269 (2000). ArticleCASPubMedPubMed Central Google Scholar
Coffey, D. S. Similarities of prostate and breast cancer: Evolution, diet, and estrogens. Urology57, 31–38 (2001). ArticleCASPubMed Google Scholar
Harkonen, P. L. & Makela, S. I. Role of estrogens in development of prostate cancer. J. Steroid Biochem. Mol. Biol.92, 297–305 (2004). ArticleCASPubMed Google Scholar
Gilleran, J. P. et al. The role of prolactin in the prostatic inflammatory response to neonatal estrogen. Endocrinology144, 2046–2054 (2003). ArticleCASPubMed Google Scholar
Huang, L., Pu, Y., Alam, S., Birch, L. & Prins, G. S. Estrogenic regulation of signaling pathways and homeobox genes during rat prostate development. J. Androl.25, 330–337 (2004). ArticleCASPubMed Google Scholar
Naslund, M. J., Strandberg, J. D. & Coffey, D. S. The role of androgens and estrogens in the pathogenesis of experimental nonbacterial prostatitis. J. Urol.140, 1049–1053 (1988). ArticleCASPubMed Google Scholar
Huang, L., Pu, Y., Alam, S., Birch, L. & Prins, G. S. The role of Fgf10 signaling in branching morphogenesis and gene expression of the rat prostate gland: lobe-specific suppression by neonatal estrogens. Dev. Biol.278, 396–414 (2005). ArticleCASPubMed Google Scholar
Prins, G. S. et al. Estrogen imprinting of the developing prostate gland is mediated through stromal estrogen receptor a: studies with aERKO and bERKO mice. Cancer Res.61, 6089–6097 (2001). CASPubMed Google Scholar
Ponniah, S., Arah, I. & Alexander, R. B. PSA is a candidate self-antigen in autoimmune chronic prostatitis/chronic pelvic pain syndrome. Prostate44, 49–54 (2000). ArticleCASPubMed Google Scholar
Theyer, G. et al. Phenotypic characterization of infiltrating leukocytes in benign prostatic hyperplasia. Lab. Invest.66, 96–107 (1992). CASPubMed Google Scholar
Bostwick, D. G., de la Roza, G., Dundore, P., Corica, F. A. & Iczkowski, K. A. Intraepithelial and stromal lymphocytes in the normal human prostate. Prostate55, 187–193 (2003). ArticlePubMed Google Scholar
De Marzo, A. M. in Prostate Cancer: Biology, Genetics and the New Therapeutics (eds Chung, L. W. K., Isaacs, W. B. & Simons, J. W.) (Humana Press, Totawa, NJ, in the press).
Steiner, G. E. et al. The picture of the prostatic lymphokine network is becoming increasingly complex. Rev. Urol.4, 171–177 (2002). PubMedPubMed Central Google Scholar
Steiner, G. E. et al. Expression and function of pro-inflammatory interleukin IL-17 and IL-17 receptor in normal, benign hyperplastic, and malignant prostate. Prostate56, 171–182 (2003). ArticleCASPubMed Google Scholar
Steiner, G. E. et al. Cytokine expression pattern in benign prostatic hyperplasia infiltrating T cells and impact of lymphocytic infiltration on cytokine mRNA profile in prostatic tissue. Lab. Invest.83, 1131–1146 (2003). ArticleCASPubMed Google Scholar
Erdman, S. E. et al. CD4+ CD25+ regulatory T lymphocytes inhibit microbially induced colon cancer in Rag2-deficient mice. Am. J. Pathol.162, 691–702 (2003). ArticleCASPubMedPubMed Central Google Scholar
Miller, A. M. et al. CD4+CD25high T cells are enriched in the tumor and peripheral blood of prostate cancer patients. J. Immunol.177, 7398–7405 (2006). ArticleCASPubMed Google Scholar
Weaver, C. T., Harrington, L. E., Mangan, P. R., Gavrieli, M. & Murphy, K. M. Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity24, 677–688 (2006). This paper reviews the discovery and characterization of a new class of T cells responsible for some forms of autoimmunity and perhaps cancer formation in a number of systems. ArticleCASPubMed Google Scholar
Langowski, J. L. et al. IL-23 promotes tumour incidence and growth. Nature442, 461–465 (2006). This paper shows the requirement for IL23 in carcinogen-induced skin cancers in animals, and that it functions by inhibiting tumour immune surveillance. ArticleCASPubMed Google Scholar
Schaid, D. J. The complex genetic epidemiology of prostate cancer. Hum. Mol. Genet.13 Spec No 1, R103–R121 (2004). ArticleCASPubMed Google Scholar
Smith, J. R. et al. Major susceptibility locus for prostate cancer on chromosome 1 suggested by a genome-wide search. Science274, 1371–1374 (1996). This is the first report in which, using a genome-wide scanning approach, a major prostate cancer-susceptibility gene was identified. ArticleCASPubMed Google Scholar
Carpten, J. et al. Germline mutations in the ribonuclease L gene in families showing linkage with HPC1. Nature Genet.30, 181–184 (2002). ArticleCASPubMed Google Scholar
Silverman, R. H. Implications for RNase L in prostate cancer biology. Biochemistry42, 1805–1812 (2003). ArticleCASPubMed Google Scholar
Hassel, B. A., Zhou, A., Sotomayor, C., Maran, A. & Silverman, R. H. A dominant negative mutant of 2–5A-dependent RNase suppresses antiproliferative and antiviral effects of interferon. EMBO J.12, 3297–3304 (1993). ArticleCASPubMedPubMed Central Google Scholar
Wiklund, F. et al. Genetic analysis of the RNASEL gene in hereditary, familial, and sporadic prostate cancer. Clin. Cancer Res.10, 7150–7156 (2004). ArticleCASPubMed Google Scholar
Maier, C. et al. Mutation screening and association study of RNASEL as a prostate cancer susceptibility gene. Br. J. Cancer92, 1159–1164 (2005). ArticleCASPubMedPubMed Central Google Scholar
Rennert, H. et al. Association of susceptibility alleles in ELAC2/HPC2, RNASEL/HPC1, and MSR1 with prostate cancer severity in European American and African American men. Cancer Epidemiol. Biomarkers Prev.14, 949–957 (2005). ArticleCASPubMed Google Scholar
Kotar, K., Hamel, N., Thiffault, I. & Foulkes, W. D. The RNASEL 471delAAAG allele and prostate cancer in Ashkenazi Jewish men. J. Med. Genet.40, e22 (2003). ArticleCASPubMedPubMed Central Google Scholar
Malathi, K. et al. A transcriptional signaling pathway in the IFN system mediated by 2'-5'-oligoadenylate activation of RNase L. Proc. Natl Acad. Sci. USA102, 14533–14538 (2005). ArticleCASPubMedPubMed Central Google Scholar
Xu, J. et al. Germline mutations and sequence variants of the macrophage scavenger receptor 1 gene are associated with prostate cancer risk. Nature Genet.32, 321–325 (2002). ArticleCASPubMed Google Scholar
Gough, P. J., Greaves, D. R. & Gordon, S. A naturally occurring isoform of the human macrophage scavenger receptor (SR-A) gene generated by alternative splicing blocks modified LDL uptake. J. Lipid. Res.39, 531–543 (1998). ArticleCASPubMed Google Scholar
Peiser, L. et al. The class A macrophage scavenger receptor is a major pattern recognition receptor for Neisseria meningitidis which is independent of lipopolysaccharide and not required for secretory responses. Infect. Immun.70, 5346–5354 (2002). ArticleCASPubMedPubMed Central Google Scholar
Ozeki, Y. et al. Macrophage scavenger receptor down-regulates mycobacterial cord factor-induced proinflammatory cytokine production by alveolar and hepatic macrophages. Microb. Pathog.40, 171–176 (2006). ArticleCASPubMed Google Scholar
Cotena, A., Gordon, S. & Platt, N. The class A macrophage scavenger receptor attenuates CXC chemokine production and the early infiltration of neutrophils in sterile peritonitis. J. Immunol.173, 6427–6432 (2004). ArticleCASPubMed Google Scholar
Xu, J. et al. Common sequence variants of the macrophage scavenger receptor 1 gene are associated with prostate cancer risk. Am. J. Hum. Genet.72, 208–212 (2003). ArticleCASPubMed Google Scholar
Miller, D. C. et al. Germ-line mutations of the macrophage scavenger receptor 1 gene: association with prostate cancer risk in African-American men. Cancer Res.63, 3486–3489 (2003). CASPubMed Google Scholar
Wang, L. et al. No association of germline alteration of MSR1 with prostate cancer risk. Nature Genet.35, 128–129 (2003). ArticleCASPubMed Google Scholar
Seppala, E. H. et al. Germ-line alterations in MSR1 gene and prostate cancer risk. Clin. Cancer Res.9, 5252–5256 (2003). PubMed Google Scholar
Hope, Q. et al. Macrophage scavenger receptor 1 999C>T (R293X) mutation and risk of prostate cancer. Cancer Epidemiol. Biomarkers Prev.14, 397–402 (2005). ArticleCASPubMed Google Scholar
Lindmark, F. et al. Analysis of the macrophage scavenger receptor 1 gene in Swedish hereditary and sporadic prostate cancer. Prostate59, 132–140 (2004). ArticleCASPubMed Google Scholar
Sun, J. et al. Meta-analysis of association of rare mutations and common sequence variants in the MSR1 gene and prostate cancer risk. Prostate66, 728–737 (2006). ArticleCASPubMed Google Scholar
Janeway, C. A. Jr. & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol.20, 197–216 (2002). ArticleCASPubMed Google Scholar
Zheng, S. L. et al. Sequence variants of toll-like receptor 4 are associated with prostate cancer risk: results from the CAncer Prostate in Sweden Study. Cancer Res.64, 2918–2922 (2004). ArticleCASPubMed Google Scholar
Sun, J. et al. Sequence variants in Toll-like receptor gene cluster (TLR6-TLR1-TLR10) and prostate cancer risk. J. Natl Cancer Inst.97, 525–532 (2005). ArticleCASPubMed Google Scholar
Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science282, 2085–2088 (1998). ArticleCASPubMed Google Scholar
Ohashi, K., Burkart, V., Flohe, S. & Kolb, H. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J. Immunol.164, 558–561 (2000). ArticleCASPubMed Google Scholar
Chen, Y. C. et al. Sequence variants of Toll-like receptor 4 and susceptibility to prostate cancer. Cancer Res.65, 11771–11778 (2005). ArticleCASPubMed Google Scholar
Chuang, T. & Ulevitch, R. J. Identification of hTLR10: a novel human Toll-like receptor preferentially expressed in immune cells. Biochim. Biophys. Acta1518, 157–161 (2001). ArticleCASPubMed Google Scholar
Takeuchi, O. et al. Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J. Immunol.169, 10–14 (2002). ArticleCASPubMed Google Scholar
Yamamoto, M., Takeda, K. & Akira, S. TIR domain-containing adaptors define the specificity of TLR signaling. Mol. Immunol.40, 861–868 (2004). ArticleCASPubMed Google Scholar
Takeuchi, O. et al. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int. Immunol.13, 933–940 (2001). ArticleCASPubMed Google Scholar
Hajjar, A. M. et al. Cutting edge: functional interactions between toll-like receptor (TLR) 2 and TLR1 or TLR6 in response to phenol-soluble modulin. J. Immunol.166, 15–19 (2001). ArticleCASPubMed Google Scholar
Lindmark, F. et al. H6D polymorphism in macrophage-inhibitory cytokine-1 gene associated with prostate cancer. J. Natl Cancer Inst.96, 1248–1254 (2004). ArticleCASPubMed Google Scholar
Lindmark, F. et al. Interleukin-1 receptor antagonist haplotype associated with prostate cancer risk. Br. J. Cancer93, 493–497 (2005). ArticleCASPubMedPubMed Central Google Scholar
McCarron, S. L. et al. Influence of cytokine gene polymorphisms on the development of prostate cancer. Cancer Res.62, 3369–3372 (2002). CASPubMed Google Scholar
Michaud, D. S. et al. Genetic polymorphisms of interleukin-1B (IL-1B), IL-6, IL-8, and IL-10 and risk of prostate cancer. Cancer Res.66, 4525–4530 (2006). ArticleCASPubMed Google Scholar
Zheng, S. L. et al. A comprehensive association study for genes in inflammation pathway provides support for their roles in prostate cancer risk in the CAPS study. Prostate66, 1556–1564 (2006). ArticleCASPubMed Google Scholar
Kasper, S. Survey of genetically engineered mouse models for prostate cancer: analyzing the molecular basis of prostate cancer development, progression, and metastasis. J. Cell Biochem.94, 279–297 (2005). ArticleCASPubMed Google Scholar
Freedman, M. L. et al. Admixture mapping identifies 8q24 as a prostate cancer risk locus in African-American men. Proc. Natl Acad. Sci. USA103, 14068–14073 (2006). ArticleCASPubMedPubMed Central Google Scholar
Amundadottir, L. T. et al. A common variant associated with prostate cancer in European and African populations. Nature Genet.38, 652–658 (2006). ArticleCASPubMed Google Scholar
Groopman, J. D. & Kensler, T. W. Role of metabolism and viruses in aflatoxin-induced liver cancer. Toxicol. Appl. Pharmacol.206, 131–137 (2005). ArticleCASPubMed Google Scholar
Condeelis, J. & Pollard, J. W. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell124, 263–266 (2006). ArticleCASPubMed Google Scholar
Lewis, C. E. & Pollard, J. W. Distinct role of macrophages in different tumor microenvironments. Cancer Res.66, 605–612 (2006). ArticleCASPubMed Google Scholar
de Visser, K. E., Eichten, A. & Coussens, L. M. Paradoxical roles of the immune system during cancer development. Nature Rev. Cancer6, 24–37 (2006). ArticleCAS Google Scholar
Chisari, F. V. Rous-Whipple Award Lecture. Viruses, immunity, and cancer: lessons from hepatitis B. Am. J. Pathol.156, 1117–1132 (2000). This paper reviews the key discovery that liver cancer can be induced simply by the transfer of activated T cells that recognize virally encoded antigens. ArticleCASPubMedPubMed Central Google Scholar
Neill, M. G. & Fleshner, N. E. An update on chemoprevention strategies in prostate cancer for 2006. Curr. Opin. Urol.16, 132–137 (2006). ArticlePubMed Google Scholar
Coussens, L. M., Tinkle, C. L., Hanahan, D. & Werb, Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell103, 481–90 (2000). ArticleCASPubMedPubMed Central Google Scholar
Dranoff, G. Cytokines in cancer pathogenesis and cancer therapy. Nature Rev. Cancer4, 11–22 (2004). ArticleCAS Google Scholar
Tsujimoto, Y., Takayama, H., Nonomura, N., Okuyama, A. & Aozasa, K. Postatrophic hyperplasia of the prostate in Japan: histologic and immunohistochemical features and p53 gene mutation analysis. Prostate52, 279–287 (2002). ArticleCASPubMed Google Scholar
Tsujimoto, Y. et al. In situ shortening of CAG repeat length within the androgen receptor gene in prostatic cancer and its possible precursors. Prostate58, 283–290 (2004). ArticleCASPubMed Google Scholar
Shah, R., Mucci, N. R., Amin, A., Macoska, J. A. & Rubin, M. A. Postatrophic hyperplasia of the prostate gland: neoplastic precursor or innocent bystander? Am. J. Pathol.158, 1767–1773 (2001). ArticleCASPubMedPubMed Central Google Scholar
Yildiz-Sezer, S. et al. Assessment of aberrations on chromosome 8 in prostatic atrophy. BJU Int.98, 184–188 (2006). ArticleCASPubMed Google Scholar
Macoska, J. A., Trybus, T. M. & Wojno, K. J. 8p22 loss concurrent with 8c gain is associated with poor outcome in prostate cancer. Urology55, 776–782 (2000). ArticleCASPubMed Google Scholar
Guo, Y. P., Sklar, G. N., Borkowski, A. & Kyprianou, N. Loss of the cyclin-dependent kinase inhibitor P27(Kip1) protein in human prostate cancer correlates with tumor grade. Clin. Cancer Res.3, 2269–2274 (1997). CASPubMed Google Scholar
De Marzo, A. M., Meeker, A. K., Epstein, J. I. & Coffey, D. S. Prostate stem cell compartments: expression of the cell cycle inhibitor p27Kip1 in normal, hyperplastic, and neoplastic cells. Am. J. Pathol.153, 911–919 (1998). ArticleCASPubMedPubMed Central Google Scholar
Yang, R. M. et al. Low p27 expression predicts poor disease-free survival in patients with prostate cancer. J. Urol.159, 941–945 (1998). ArticleCASPubMed Google Scholar
Denicourt, C. & Dowdy, S. F. Cip/Kip proteins: more than just CDKs inhibitors. Genes Dev.18, 851–855 (2004). ArticleCASPubMed Google Scholar
Vivanco, I. & Sawyers, C. L. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nature Rev. Cancer2, 489–501 (2002). ArticleCAS Google Scholar
Shen, M. M. & Abate-Shen, C. Roles of the Nkx3.1 homeobox gene in prostate organogenesis and carcinogenesis. Dev. Dyn.228, 767–778 (2003). ArticleCASPubMed Google Scholar
Ouyang, X., DeWeese, T. L., Nelson, W. G. & Abate-Shen, C. Loss-of-function of Nkx3.1 promotes increased oxidative damage in prostate carcinogenesis. Cancer Res.65, 6773–6779 (2005). ArticleCASPubMed Google Scholar
Parsons, J. K. et al. GSTA1 expression in normal, preneoplastic, and neoplastic human prostate tissue. Prostate49, 30–37 (2001). ArticleCASPubMed Google Scholar
Zha, S. et al. Cyclooxygenase-2 is up-regulated in proliferative inflammatory atrophy of the prostate, but not in prostate carcinoma. Cancer Res.61, 8617–8623 (2001). CASPubMed Google Scholar
Knudsen, B. S. et al. Regulation of hepatocyte activator inhibitor-1 expression by androgen and oncogenic transformation in the prostate. Am. J. Pathol.167, 255–266 (2005). ArticleCASPubMedPubMed Central Google Scholar
Dennis, L. K. & Dawson, D. V. Meta-analysis of measures of sexual activity and prostate cancer. Epidemiology13, 72–79 (2002). ArticlePubMed Google Scholar
Taylor, M. L., Mainous, A. G., 3rd & Wells, B. J. Prostate cancer and sexually transmitted diseases: a meta-analysis. Fam. Med.37, 506–512 (2005). PubMed Google Scholar
Sutcliffe, S. et al. Plasma antibodies against Trichomonas vaginalis and subsequent risk of prostate cancer. Cancer Epidemiol. Biomarkers Prev.15, 939–945 (2006). This is the first study linking objective evidence of exposure toTrichomonas vaginaliswith prostate cancer risk. ArticleCASPubMed Google Scholar
Sutcliffe, S. et al. Sexually transmitted infections and prostatic inflammation/cell damage as measured by serum prostate specific antigen concentration. J. Urol.175, 1937–1942 (2006). ArticlePubMed Google Scholar