Are oncoantigens suitable targets for anti-tumour therapy? (original) (raw)
Szabo, E. Selecting targets for cancer prevention: where do we go from here? Nature Rev. Cancer6, 867–874 (2006). ArticleCAS Google Scholar
Kalluri, R. & Zeisberg, M. Fibroblasts in cancer. Nature Rev. Cancer6, 392–401 (2006). ArticleCAS Google Scholar
Karre, K., Ljunggren, H. G., Piontek, G. & Kiessling, R. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature319, 675–678 (1986). ArticleCASPubMed Google Scholar
Bauer, S. et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science285, 727–729 (1999). ArticleCASPubMed Google Scholar
Nolte-'t Hoen, E. N. et al. Increased surveillance of cells in mitosis by human NK cells suggests a novel strategy for limiting tumor growth and viral replication. Blood109, 670–673 (2007). ArticleCASPubMed Google Scholar
Merlo, L. M., Pepper, J. W., Reid, B. J. & Maley, C. C. Cancer as an evolutionary and ecological process. Nature Rev. Cancer6, 924–935 (2006). ArticleCAS Google Scholar
Dunn, G. P., Bruce, A. T., Ikeda, H., Old, L. J. & Schreiber, R. D. Cancer immunoediting: from immunosurveillance to tumor escape. Nature Immunol.3, 991–998 (2002). ArticleCAS Google Scholar
Lollini, P. L., Cavallo, F., Nanni, P. & Forni, G. Vaccines for tumour prevention. Nature Rev. Cancer6, 204–216 (2006). ArticleCAS Google Scholar
Finn, O. J. Cancer vaccines: between the idea and the reality. Nature Rev. Immunol.3, 630–641 (2003). ArticleCAS Google Scholar
Lollini, P. L. & Forni, G. Cancer immunoprevention: tracking down persistent tumor antigens. Trends Immunol.24, 62–66 (2003). ArticleCASPubMed Google Scholar
Nanni, P. et al. p185(neu) protein is required for tumor and anchorage-independent growth, not for cell proliferation of transgenic mammary carcinoma. Int. J. Cancer87, 186–194 (2000). ArticleCASPubMed Google Scholar
Holmgren, L. et al. A DNA vaccine targeting angiomotin inhibits angiogenesis and suppresses tumor growth. Proc. Natl Acad. Sci. USA103, 9208–9213 (2006). ArticleCASPubMedPubMed Central Google Scholar
Ferrara, N., Mass, R. D., Campa, C. & Kim, R. Targeting VEGF-A to treat cancer and age-related macular degeneration. Annu. Rev. Med.58, 491–504 (2007). ArticleCASPubMed Google Scholar
Friedman, L. M. et al. Synergistic down-regulation of receptor tyrosine kinases by combinations of mAbs: implications for cancer immunotherapy. Proc. Natl Acad. Sci. USA102, 1915–1920 (2005). ArticleCASPubMedPubMed Central Google Scholar
Nanni, P. et al. Combined allogeneic tumor cell vaccination and systemic interleukin 12 prevents mammary carcinogenesis in HER-2/neu transgenic mice. J. Exp. Med.194, 1195–1205 (2001). ArticleCASPubMedPubMed Central Google Scholar
Luo, W., Ko, E., Hsu, J. C., Wang, X. & Ferrone, S. Targeting melanoma cells with human high molecular weight-melanoma associated antigen-specific antibodies elicited by a peptide mimotope: functional effects. J. Immunol.176, 6046–6054 (2006). ArticleCASPubMed Google Scholar
Yarden, Y. & Sliwkowski, M. X. Untangling the ErbB signalling network. Nature Rev. Mol. Cell Biol.2, 127–137 (2001). ArticleCAS Google Scholar
Boccaccio, C. & Comoglio, P. M. Invasive growth: a MET-driven genetic programme for cancer and stem cells. Nature Rev. Cancer6, 637–645 (2006). ArticleCAS Google Scholar
Zbuk, K. M. & Eng, C. Cancer phenomics: RET and PTEN as illustrative models. Nature Rev. Cancer7, 35–45 (2007). ArticleCAS Google Scholar
Pedersen, I. M., Buhl, A. M., Klausen, P., Geisler, C. H. & Jurlander, J. The chimeric anti-CD20 antibody rituximab induces apoptosis in B-cell chronic lymphocytic leukemia cells through a p38 mitogen activated protein-kinase-dependent mechanism. Blood99, 1314–1319 (2002). ArticleCASPubMed Google Scholar
Gunawardana, C. G. & Diamandis, E. P. High throughput proteomic strategies for identifying tumour-associated antigens. Cancer Lett.249, 110–119 (2007). ArticleCASPubMed Google Scholar
Preuss, K. D., Zwick, C., Bormann, C., Neumann, F. & Pfreundschuh, M. Analysis of the B-cell repertoire against antigens expressed by human neoplasms. Immunol. Rev.188, 43–50 (2002). ArticleCASPubMed Google Scholar
Klade, C. S. Proteomics approaches towards antigen discovery and vaccine development. Curr. Opin. Mol. Ther.4, 216–223 (2002). CASPubMed Google Scholar
Kreunin, P., Yoo, C., Urquidi, V., Lubman, D. M. & Goodison, S. Proteomic profiling identifies breast tumor metastasis-associated factors in an isogenic model. Proteomics7, 299–312 (2007). ArticleCASPubMedPubMed Central Google Scholar
He, Y. D. Genomic approach to biomarker identification and its recent applications. Cancer Biomark.2, 103–133 (2006). ArticleCASPubMed Google Scholar
Narayanan, R. Bioinformatics approaches to cancer gene discovery. Methods Mol. Biol.360, 13–31 (2007). CASPubMed Google Scholar
Abate-Shen, C. A new generation of mouse models of cancer for translational research. Clin. Cancer Res.12, 5274–5276 (2006). ArticleCASPubMed Google Scholar
Rangarajan, A. & Weinberg, R. A. Opinion: comparative biology of mouse versus human cells: modelling human cancer in mice. Nature Rev. Cancer3, 952–959 (2003). ArticleCAS Google Scholar
Pillai, R. S., Bhattacharyya, S. N. & Filipowicz, W. Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell Biol.17, 118–126 (2007). ArticleCASPubMed Google Scholar
Hossain, A., Kuo, M. T. & Saunders, G. F. Mir-17–5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Mol. Cell Biol.26, 8191–8201 (2006). ArticleCASPubMedPubMed Central Google Scholar
Uhlen, M. et al. A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol. Cell Proteomics4, 1920–1932 (2005). ArticleCASPubMed Google Scholar
Cavallo, F. et al. An integrated approach of immunogenomics and bioinformatics to identify new Tumor Associated Antigens (TAA) for mammary cancer immunological prevention. BMC Bioinformatics6 Suppl. 4, S7 (2005). ArticlePubMedPubMed CentralCAS Google Scholar
Barrett, T. et al. NCBI GEO: mining tens of millions of expression profiles--database and tools update. Nucleic Acids Res.35, D760–D765 (2007). ArticleCASPubMed Google Scholar
Parkinson, H. et al. ArrayExpress-a public database of microarray experiments and gene expression profiles. Nucleic Acids Res.35, D747–D750 (2007). ArticleCASPubMed Google Scholar
Michiels, S., Koscielny, S. & Hill, C. Prediction of cancer outcome with microarrays: a multiple random validation strategy. Lancet365, 488–492 (2005). ArticleCASPubMed Google Scholar
Sims, A. H., Ong, K. R., Clarke, R. B. & Howell, A. High-throughput genomic technology in research and clinical management of breast cancer. Exploiting the potential of gene expression profiling: is it ready for the clinic? Breast Cancer Res.8, 214 (2006). ArticlePubMedPubMed Central Google Scholar
Lu, Y. et al. A gene expression signature predicts survival of patients with stage I non-small cell lung cancer. PLoS Med.3, e467 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Mehra, R. et al. Identification of GATA3 as a breast cancer prognostic marker by global gene expression meta-analysis. Cancer Res.65, 11259–11264 (2005). ArticleCASPubMed Google Scholar
Miles, M. F. & Williams, R. W. Meta-analysis for microarray studies of the genetics of complex traits. Trends Biotechnol.25, 45–47 (2007). ArticleCASPubMed Google Scholar
Hyatt, G. et al. Gene expression microarrays: glimpses of the immunological genome. Nature Immunol.7, 686–691 (2006). ArticleCAS Google Scholar
van 't Veer, L. J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature415, 530–536 (2002). ArticleCASPubMed Google Scholar
Miller, L. D. et al. An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc. Natl Acad. Sci. USA102, 13550–13555 (2005). ArticleCASPubMedPubMed Central Google Scholar
Pawitan, Y. et al. Gene expression profiling spares early breast cancer patients from adjuvant therapy: derived and validated in two population-based cohorts. Breast Cancer Res.7, R953–R964 (2005). ArticleCASPubMedPubMed Central Google Scholar
Calogero, R., Cordero, F, Forni, G & Cavallo, F. Inflammatory component of mammary carcinogenesis in ErbB2 transgenic mice. Breast Cancer Res. (in the press).
Vlad, A. M., Kettel, J. C., Alajez, N. M., Carlos, C. A. & Finn, O. J. MUC1 immunobiology: from discovery to clinical applications. Adv. Immunol.82, 249–293 (2004). ArticleCASPubMed Google Scholar
Carraway, K. L., 3rd, Funes, M., Workman, H. C. & Sweeney, C. Contribution of membrane mucins to tumor progression through modulation of cellular growth signaling pathways. Curr. Top. Dev. Biol.78, 1–22 (2007). ArticleCASPubMed Google Scholar
Wei, X., Xu, H. & Kufe, D. Human mucin 1 oncoprotein represses transcription of the p53 tumor suppressor gene. Cancer Res.67, 1853–1858 (2007). ArticleCASPubMed Google Scholar
Thompson, E. J. et al. Tyrosines in the MUC1 cytoplasmic tail modulate transcription via the extracellular signal-regulated kinase 1/2 and nuclear factor-κB pathways. Mol. Cancer Res.4, 489–497 (2006). ArticleCASPubMed Google Scholar
Singh, P. K. & Hollingsworth, M. A. Cell surface-associated mucins in signal transduction. Trends Cell Biol.16, 467–476 (2006). ArticleCASPubMed Google Scholar
Kohlgraf, K. G. et al. Contribution of the MUC1 tandem repeat and cytoplasmic tail to invasive and metastatic properties of a pancreatic cancer cell line. Cancer Res.63, 5011–5020 (2003). CASPubMed Google Scholar
Ambrosino, E. et al. Immunosurveillance of Erbb2 carcinogenesis in transgenic mice is concealed by a dominant regulatory T-cell self-tolerance. Cancer Res.66, 7734–7740 (2006). ArticleCASPubMed Google Scholar
Rolla, S. et al. Distinct and non-overlapping T cell receptor repertoires expanded by DNA vaccination in wild-type and HER-2 transgenic BALB/c mice. J. Immunol.177, 7626–7633 (2006). ArticleCASPubMed Google Scholar
Sakaguchi, N. et al. Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature426, 454–460 (2003). ArticleCASPubMed Google Scholar
Disis, M. L. et al. High-titer HER-2/neu protein-specific antibody can be detected in patients with early-stage breast cancer. J. Clin. Oncol.15, 3363–3367 (1997). ArticleCASPubMed Google Scholar
Al-Batran, S. E. et al. Intratumoral T-cell infiltrates and MHC class I expression in patients with stage IV melanoma. Cancer Res.65, 3937–3941 (2005). ArticleCASPubMed Google Scholar
Ohlen, C. et al. CD8(+) T cell tolerance to a tumor-associated antigen is maintained at the level of expansion rather than effector function. J. Exp. Med.195, 1407–1418 (2002). ArticleCASPubMedPubMed Central Google Scholar
Nanni, P. et al. Immunoprevention of mammary carcinoma in HER-2/neu transgenic mice is IFN-gamma and B cell dependent. J. Immunol.173, 2288–2296 (2004). ArticleCASPubMed Google Scholar
Park, J. M. et al. Early role of CD4+ Th1 cells and antibodies in HER-2 adenovirus vaccine protection against autochthonous mammary carcinomas. J. Immunol.174, 4228–4236 (2005). ArticleCASPubMed Google Scholar
Imai, K. & Takaoka, A. Comparing antibody and small-molecule therapies for cancer. Nature Rev. Cancer6, 714–727 (2006). ArticleCAS Google Scholar
Terabe, M. et al. Transforming growth factor-β production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence. J. Exp. Med.198, 1741–1752 (2003). ArticleCASPubMedPubMed Central Google Scholar
Bronte, V. & Zanovello, P. Regulation of immune responses by L-arginine metabolism. Nature Rev. Immunol.5, 641–654 (2005). ArticleCAS Google Scholar
Gallina, G. et al. Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J. Clin. Invest.116, 2777–2790 (2006). ArticleCASPubMedPubMed Central Google Scholar
Lustgarten, J., Dominguez, A. L. & Cuadros, C. The CD8+ T cell repertoire against Her-2/neu antigens in neu transgenic mice is of low avidity with antitumor activity. Eur. J. Immunol.34, 752–761 (2004). ArticleCASPubMed Google Scholar
Cavallo, F., Offringa, R., van der Burg, S. H., Forni, G. & Melief, C. J. Vaccination for treatment and prevention of cancer in animal models. Adv. Immunol.90, 175–213 (2006). ArticleCASPubMed Google Scholar
Quaglino, E. et al. Electroporated DNA vaccine clears away multifocal mammary carcinomas in her-2/neu transgenic mice. Cancer Res.64, 2858–2864 (2004). ArticleCASPubMed Google Scholar
Quaglino, E. et al. Concordant morphologic and gene expression data show that a vaccine halts HER-2/neu preneoplastic lesions. J. Clin. Invest.113, 709–717 (2004). ArticleCASPubMedPubMed Central Google Scholar
Sjoblom, T. et al. The consensus coding sequences of human breast and colorectal cancers. Science314, 268–274 (2006). ArticleCASPubMed Google Scholar
Pannellini, T. et al. Timely DNA vaccine combined with systemic IL-12 prevents parotid carcinomas before a dominant-negative p53 makes their growth independent of HER-2/neu expression. J. Immunol.176, 7695–7703 (2006). ArticleCASPubMed Google Scholar
Dorrell, M. I., Aguilar, E., Scheppke, L., Barnett, F. H. & Friedlander, M. Combination angiostatic therapy completely inhibits ocular and tumor angiogenesis. Proc. Natl Acad. Sci. USA104, 967–972 (2007). ArticleCASPubMedPubMed Central Google Scholar
Emens, L. A. Roadmap to a better therapeutic tumor vaccine. Int. Rev. Immunol.25, 415–443 (2006). ArticleCASPubMed Google Scholar
Lu, H., Knutson, K. L., Gad, E. & Disis, M. L. The tumor antigen repertoire identified in tumor-bearing Neu transgenic mice predicts human tumor antigens. Cancer Res.66, 9754–9761 (2006). ArticleCASPubMed Google Scholar
Pannellini, T., Forni, G. & Musiani, P. Immunobiology of her-2/neu transgenic mice. Breast Dis.20, 33–42 (2004). ArticlePubMed Google Scholar
Astolfi, A. et al. Gene expression analysis of immune-mediated arrest of tumorigenesis in a transgenic mouse model of HER-2/neu-positive basal-like mammary carcinoma. Am. J. Pathol.166, 1205–1216 (2005). ArticleCASPubMedPubMed Central Google Scholar
Astolfi, A. et al. Immune prevention of mammary carcinogenesis in HER-2/neu transgenic mice: a microarray scenario. Cancer Immunol. Immunother.54, 599–610 (2005). ArticleCASPubMed Google Scholar
Melani, C., Chiodoni, C., Forni, G. & Colombo, M. P. Myeloid cell expansion elicited by the progression of spontaneous mammary carcinomas in c-erbB-2 transgenic BALB/c mice suppresses immune reactivity. Blood102, 2138–2145 (2003). ArticleCASPubMed Google Scholar
Garber, K. New insights into oncogene addiction found. J. Natl Cancer Inst.99, 264–265, 269 (2007). ArticlePubMed Google Scholar
Cappello, P. et al. LAG-3 enables DNA vaccination to persistently prevent mammary carcinogenesis in HER-2/neu transgenic BALB/c mice. Cancer Res.63, 2518–25 (2003). CASPubMed Google Scholar
Ercolini, A. M. et al. Recruitment of latent pools of high-avidity CD8(+) T cells to the antitumor immune response. J. Exp. Med.201, 1591–1602 (2005). ArticleCASPubMedPubMed Central Google Scholar
Albini, A. & Sporn, M. B. The tumour microenvironment as a target for chemoprevention. Nature Rev. Cancer7, 139–147 (2007). ArticleCAS Google Scholar