Molecular heterogeneity of breast carcinomas and the cancer stem cell hypothesis (original) (raw)
Kinzler, K. W. & Vogelstein, B. Lessons from hereditary colorectal cancer. Cell87, 159–170 (1996). ArticleCASPubMed Google Scholar
Deramaudt, T. & Rustgi, A. K. Mutant KRAS in the initiation of pancreatic cancer. Biochim. Biophys. Acta1756, 97–101 (2005). CASPubMed Google Scholar
Segditsas, S. & Tomlinson, I. Colorectal cancer and genetic alterations in the Wnt pathway. Oncogene25, 7531–7537 (2006). ArticleCASPubMed Google Scholar
Tavassoli, F. A. & Devilee, P. Pathology and Genetics of Tumours of the Breast and Female Genital Organs (International Agency for Research on Cancer, Oxford Univ. Press, Lyon, 2003). Google Scholar
Buerger, H. et al. Ductal invasive G2 and G3 carcinomas of the breast are the end stages of at least two different lines of genetic evolution. J. Pathol.194, 165–170 (2001). ArticleCASPubMed Google Scholar
Buerger, H. et al. Comparative genomic hybridization of ductal carcinoma in situ of the breast-evidence of multiple genetic pathways. J. Pathol.187, 396–402 (1999). ArticleCASPubMed Google Scholar
Buerger, H. et al. Different genetic pathways in the evolution of invasive breast cancer are associated with distinct morphological subtypes. J. Pathol.189, 521–526 (1999). ArticleCASPubMed Google Scholar
Marsh, S. & McLeod, H. L. Pharmacogenetics and oncology treatment for breast cancer. Expert Opin. Pharmacother.8, 119–127 (2007). ArticleCASPubMed Google Scholar
Brenton, J. D., Carey, L. A., Ahmed, A. A. & Caldas, C. Molecular classification and molecular forecasting of breast cancer: ready for clinical application? J. Clin. Oncol.23, 7350–7360 (2005). ArticleCASPubMed Google Scholar
Sjoblom, T. et al. The consensus coding sequences of human breast and colorectal cancers. Science314, 268–274 (2006). ArticleCASPubMed Google Scholar
Sorlie, T. et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl Acad. Sci. USA98, 10869–10874 (2001). ArticleCASPubMedPubMed Central Google Scholar
Sorlie, T. et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl Acad. Sci. USA100, 8418–8423 (2003). ArticleCASPubMedPubMed Central Google Scholar
Sotiriou, C. et al. Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc. Natl Acad. Sci. USA100, 10393–10398 (2003). ArticleCASPubMedPubMed Central Google Scholar
Bertucci, F. et al. Gene expression profiling shows medullary breast cancer is a subgroup of basal breast cancers. Cancer Res.66, 4636–4644 (2006). ArticleCASPubMed Google Scholar
Bertucci, F. et al. Gene expression profiling identifies molecular subtypes of inflammatory breast cancer. Cancer Res.65, 2170–2178 (2005). ArticleCASPubMed Google Scholar
Jones, C. et al. Expression profiling of purified normal human luminal and myoepithelial breast cells: identification of novel prognostic markers for breast cancer. Cancer Res.64, 3037–3045 (2004). ArticleCASPubMed Google Scholar
Stingl, J., Eaves, C. J., Kuusk, U. & Emerman, J. T. Phenotypic and functional characterization in vitro of a multipotent epithelial cell present in the normal adult human breast. Differentiation63, 201–213 (1998). ArticleCASPubMed Google Scholar
Stingl, J., Eaves, C. J., Zandieh, I. & Emerman, J. T. Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue. Breast Cancer Res. Treat.67, 93–109 (2001). ArticleCASPubMed Google Scholar
Gudjonsson, T. et al. Isolation, immortalization, and characterization of a human breast epithelial cell line with stem cell properties. Genes Dev.16, 693–706 (2002). ArticleCASPubMedPubMed Central Google Scholar
Dontu, G. et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev.17, 1253–1270 (2003). ArticleCASPubMedPubMed Central Google Scholar
Parmar, H. et al. A novel method for growing human breast epithelium in vivo using mouse and human mammary fibroblasts. Endocrinology143, 4886–4896 (2002). ArticleCASPubMed Google Scholar
Stingl, J., Raouf, A., Emerman, J. T. & Eaves, C. J. Epithelial progenitors in the normal human mammary gland. J. Mammary Gland Biol. Neoplasia10, 49–59 (2005). ArticlePubMed Google Scholar
Proia, D. A. & Kuperwasser, C. Reconstruction of human mammary tissues in a mouse model. Nature Protoc.1, 206–214 (2006). ArticleCAS Google Scholar
Stingl, J. et al. Purification and unique properties of mammary epithelial stem cells. Nature439, 993–997 (2006). ArticleCASPubMed Google Scholar
Shackleton, M. et al. Generation of a functional mammary gland from a single stem cell. Nature439, 84–88 (2006). ArticleCASPubMed Google Scholar
Smalley, M. J., Titley, J. & O'Hare, M. J. Clonal characterization of mouse mammary luminal epithelial and myoepithelial cells separated by fluorescence-activated cell sorting. In Vitro Cell Dev. Biol. Anim.34, 711–721 (1998). ArticleCASPubMed Google Scholar
Asselin-Labat, M. L. et al. Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nature Cell Biol.9, 201–209 (2007). ArticleCASPubMed Google Scholar
Sleeman, K. E. et al. Dissociation of estrogen receptor expression and in vivo stem cell activity in the mammary gland. J. Cell Biol.176, 19–26 (2007). ArticleCASPubMedPubMed Central Google Scholar
Asselin-Labat, M. L. et al. Steroid hormone receptor status of mouse mammary stem cells. J. Natl Cancer Inst.98, 1011–1014 (2006). ArticleCASPubMed Google Scholar
Clarke, R. B., Howell, A., Potten, C. S. & Anderson, E. P27(KIP1) expression indicates that steroid receptor-positive cells are a non-proliferating, differentiated subpopulation of the normal human breast epithelium. Eur. J. Cancer36 (Suppl. 4), 28–29 (2000). Article Google Scholar
Jordan, V. C. SERMs: meeting the promise of multifunctional medicines. J. Natl Cancer Inst.99, 350–356 (2007). ArticleCASPubMed Google Scholar
Shyamala, G., Chou, Y. C., Cardiff, R. D. & Vargis, E. Effect of c-neu/ ErbB2 expression levels on estrogen receptor α-dependent proliferation in mammary epithelial cells: implications for breast cancer biology. Cancer Res.66, 10391–10398 (2006). ArticleCASPubMed Google Scholar
Booth, B. W. & Smith, G. H. Estrogen receptor-α and progesterone receptor are expressed in label-retaining mammary epithelial cells that divide asymmetrically and retain their template DNA strands. Breast Cancer Res.8, R49 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Abd El-Rehim, D. M. et al. High-throughput protein expression analysis using tissue microarray technology of a large well-characterised series identifies biologically distinct classes of breast cancer confirming recent cDNA expression analyses. Int. J. Cancer116, 340–350 (2005). ArticleCASPubMed Google Scholar
Callagy, G. et al. Molecular classification of breast carcinomas using tissue microarrays. Diagn. Mol. Pathol.12, 27–34 (2003). ArticleCASPubMed Google Scholar
Makretsov, N. A. et al. Hierarchical clustering analysis of tissue microarray immunostaining data identifies prognostically significant groups of breast carcinoma. Clin. Cancer Res.10, 6143–6151 (2004). ArticleCASPubMed Google Scholar
Nielsen, T. O. et al. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin. Cancer Res.10, 5367–5374 (2004). ArticleCASPubMed Google Scholar
Naderi, A. et al. A gene-expression signature to predict survival in breast cancer across independent data sets. Oncogene26, 1507–1516 (2007). ArticleCASPubMed Google Scholar
Teschendorff, A. E. et al. A consensus prognostic gene expression classifier for ER positive breast cancer. Genome Biol.7, R101 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Kouros-Mehr, H., Slorach, E. M., Sternlicht, M. D. & Werb, Z. GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell127, 1041–1055 (2006). ArticleCASPubMedPubMed Central Google Scholar
Alizadeh, A. A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature403, 503–511 (2000). ArticleCASPubMed Google Scholar
Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA100, 3983–3988 (2003). ArticleCASPubMedPubMed Central Google Scholar
O'Brien, C. A., Pollett, A., Gallinger, S. & Dick, J. E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature445, 106–110 (2007). ArticleCASPubMed Google Scholar
Singh, S. K. et al. Identification of human brain tumour initiating cells. Nature432, 396–401 (2004). ArticleCASPubMed Google Scholar
Bonnet, D. & Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Med.3, 730–737 (1997). ArticleCASPubMed Google Scholar
Li, C. et al. Identification of pancreatic cancer stem cells. Cancer Res.67, 1030–1037 (2007). ArticleCASPubMed Google Scholar
Kelly, P. N., Dakic, A., Adams, J. M., Nutt, S. L. & Strasser, A. Tumor growth need not be driven by rare cancer stem cells. Science317, 337 (2007). ArticleCASPubMed Google Scholar
Liu, R. et al. The prognostic role of a gene signature from tumorigenic breast-cancer cells. N. Engl. J. Med.356, 217–226 (2007). ArticleCASPubMed Google Scholar
Ponti, D. et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res.65, 5506–5511 (2005). ArticleCASPubMed Google Scholar
Neve, R. M. et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell10, 515–527 (2006). ArticleCASPubMedPubMed Central Google Scholar
Gordon, L. A. et al. Breast cell invasive potential relates to the myoepithelial phenotype. Int. J. Cancer106, 8–16 (2003). ArticleCASPubMed Google Scholar
Sheridan, C. et al. CD44+/CD24− breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res.8, R59 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Hirschmann-Jax, C. et al. A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc. Natl Acad. Sci. USA101, 14228–14233 (2004). ArticleCASPubMedPubMed Central Google Scholar
Patrawala, L. et al. Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2− cancer cells are similarly tumorigenic. Cancer Res.65, 6207–6219 (2005). ArticleCASPubMed Google Scholar
Cariati, N. et al. α6-Integrin is necessary for the tumourigenicity of a stem cell-like subpopulation within the MCF7 breast cancer cell line. Int. J. Cancer (in the press).
Chepko, G. & Smith, G. H. Three division-competent, structurally-distinct cell populations contribute to murine mammary epithelial renewal. Tissue Cell29, 239–253 (1997). ArticleCASPubMed Google Scholar
Zeps, N., Bentel, J. M., Papadimitriou, J. M., D'Antuono, M. F. & Dawkins, H. J. Estrogen receptor-negative epithelial cells in mouse mammary gland development and growth. Differentiation62, 221–226 (1998). ArticleCASPubMed Google Scholar
Sapino, A., Macri, L., Gugliotta, P. & Bussolati, G. Immunocytochemical identification of proliferating cell types in mouse mammary gland. J. Histochem. Cytochem.38, 1541–1547 (1990). ArticleCASPubMed Google Scholar
Ferguson, D. J. Ultrastructural characterisation of the proliferative (stem?) cells within the parenchyma of the normal “resting” breast. Virchows Arch. A407, 379–385 (1985). ArticleCAS Google Scholar
Ferguson, D. J. An ultrastructural study of mitosis and cytokinesis in normal 'resting' human breast. Cell Tissue Res.252, 581–587 (1988). ArticleCASPubMed Google Scholar
Joshi, K., Smith, J. A., Perusinghe, N. & Monoghan, P. Cell proliferation in the human mammary epithelium. Differential contribution by epithelial and myoepithelial cells. Am. J. Pathol.124, 199–206 (1986). CASPubMedPubMed Central Google Scholar
Preston-Martin, S., Pike, M. C., Ross, R. K., Jones, P. A. & Henderson, B. E. Increased cell division as a cause of human cancer. Cancer Res.50, 7415–7421 (1990). CASPubMed Google Scholar
Huntly, B. J. et al. MOZ–TIF2, but not BCR–ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell6, 587–596 (2004). ArticleCASPubMed Google Scholar
Cozzio, A. et al. Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev.17, 3029–3035 (2003). ArticleCASPubMedPubMed Central Google Scholar
So, C. W. et al. MLL-GAS7 transforms multipotent hematopoietic progenitors and induces mixed lineage leukemias in mice. Cancer Cell3, 161–171 (2003). ArticleCASPubMed Google Scholar
Passegue, E., Jamieson, C. H., Ailles, L. E. & Weissman, I. L. Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc. Natl Acad. Sci. USA100 (Suppl. 1), 11842–11849 (2003). ArticleCASPubMedPubMed Central Google Scholar
Krivtsov, A. V. et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL–AF9. Nature442, 818–822 (2006). ArticleCASPubMed Google Scholar
Turhan, A. G. et al. Highly purified primitive hematopoietic stem cells are PML–RARA negative and generate nonclonal progenitors in acute promyelocytic leukemia. Blood85, 2154–2161 (1995). CASPubMed Google Scholar
Dontu, G., El-Ashry, D. & Wicha, M. S. Breast cancer, stem/progenitor cells and the estrogen receptor. Trends Endocrinol. Metab.15, 193–197 (2004). ArticleCASPubMed Google Scholar
Miyamoto, T. et al. Persistence of multipotent progenitors expressing AML1/ETO transcripts in long-term remission patients with t(8;21) acute myelogenous leukemia. Blood87, 4789–4796 (1996). CASPubMed Google Scholar
Miyamoto, T., Weissman, I. L. & Akashi, K. AML1/ETO-expressing nonleukemic stem cells in acute myelogenous leukemia with 8;21 chromosomal translocation. Proc. Natl Acad. Sci. USA97, 7521–7526 (2000). ArticleCASPubMedPubMed Central Google Scholar
Yuan, Y. et al. AML1–ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proc. Natl Acad. Sci. USA98, 10398–10403 (2001). ArticleCASPubMedPubMed Central Google Scholar
Blair, A., Hogge, D. E., Ailles, L. E., Lansdorp, P. M. & Sutherland, H. J. Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood89, 3104–3112 (1997). CASPubMed Google Scholar
Jamieson, C. H. et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N. Engl. J. Med.351, 657–667 (2004). ArticleCASPubMed Google Scholar
Shipitsin, M. et al. Molecular definition of breast tumor heterogeneity. Cancer Cell11, 259–273 (2007). ArticleCASPubMed Google Scholar
McKenzie, J. L., Gan, O. I., Doedens, M., Wang, J. C. & Dick, J. E. Individual stem cells with highly variable proliferation and self-renewal properties comprise the human hematopoietic stem cell compartment. Nature Immunol.7, 1225–1233 (2006). ArticleCAS Google Scholar
Hope, K. J., Jin, L. & Dick, J. E. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nature Immunol.5, 738–743 (2004). ArticleCAS Google Scholar
Barabe, F., Kennedy, J. A., Hope, K. J. & Dick, J. E. Modeling the initiation and progression of human acute leukemia in mice. Science316, 600–604 (2007). ArticleCASPubMed Google Scholar
Sleeman, K. E., Kendrick, H., Ashworth, A., Isacke, C. M. & Smalley, M. J. CD24 staining of mouse mammary gland cells defines luminal epithelial, myoepithelial/basal and non-epithelial cells. Breast Cancer Res.8, R7 (2006). ArticlePubMedCAS Google Scholar
Dimri, G., Band, H. & Band, V. Mammary epithelial cell transformation: insights from cell culture and mouse models. Breast Cancer Res.7, 171–179 (2005). ArticleCASPubMedPubMed Central Google Scholar
Sun, W., Kang, K. S., Morita, I., Trosko, J. E. & Chang, C. C. High susceptibility of a human breast epithelial cell type with stem cell characteristics to telomerase activation and immortalization. Cancer Res.59, 6118–6123 (1999). CASPubMed Google Scholar
Liu, B. Y., McDermott, S. P., Khwaja, S. S. & Alexander, C. M. The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proc. Natl Acad. Sci. USA101, 4158–4163 (2004). ArticleCASPubMedPubMed Central Google Scholar
Liu, S. et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res.66, 6063–6071 (2006). ArticleCASPubMedPubMed Central Google Scholar
Dontu, G. et al. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res.6, R605–R615 (2004). ArticleCASPubMedPubMed Central Google Scholar
Li, Y. et al. Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc. Natl Acad. Sci. USA100, 15853–15858 (2003). ArticleCASPubMedPubMed Central Google Scholar
Li, Y. & Rosen, J. M. Stem/progenitor cells in mouse mammary gland development and breast cancer. J. Mammary Gland Biol. Neoplasia10, 17–24 (2005). ArticlePubMed Google Scholar
Cardiff, R. D. et al. The mammary pathology of genetically engineered mice: the consensus report and recommendations from the Annapolis meeting. Oncogene19, 968–988 (2000). ArticleCASPubMed Google Scholar
Henry, M. D., Triplett, A. A., Oh, K. B., Smith, G. H. & Wagner, K. U. Parity-induced mammary epithelial cells facilitate tumorigenesis in MMTV-neu transgenic mice. Oncogene23, 6980–6985 (2004). ArticleCASPubMed Google Scholar
Andrechek, E. R. et al. Amplification of the neu/erbB-2 oncogene in a mouse model of mammary tumorigenesis. Proc. Natl Acad. Sci. USA97, 3444–3449 (2000). ArticleCASPubMedPubMed Central Google Scholar
Abd El-Rehim, D. M. et al. Expression of luminal and basal cytokeratins in human breast carcinoma. J. Pathol.203, 661–671 (2004). ArticlePubMed Google Scholar
van de Rijn, M. et al. Expression of cytokeratins 17 and 5 identifies a group of breast carcinomas with poor clinical outcome. Am. J. Pathol.161, 1991–1996 (2002). ArticleCASPubMedPubMed Central Google Scholar
van 't Veer, L. J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature415, 530–536 (2002). ArticleCASPubMed Google Scholar
Jumppanen, M. et al. Basal-like phenotype is not associated with patient survival in estrogen-receptor- negative breast cancers. Breast Cancer Res.9, R16 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Yehiely, F., Moyano, J. V., Evans, J. R., Nielsen, T. O. & Cryns, V. L. Deconstructing the molecular portrait of basal-like breast cancer. Trends Mol. Med.12, 537–544 (2006). ArticleCASPubMed Google Scholar
Livasy, C. A. et al. Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma. Mod. Pathol.19, 264–271 (2006). ArticleCASPubMed Google Scholar
Wynford-Thomas, D. & Blaydes, J. The influence of cell context on the selection pressure for p53 mutation in human cancer. Carcinogenesis19, 29–36 (1998). ArticleCASPubMed Google Scholar
Comer, K. A. et al. Human smooth muscle α-actin gene is a transcriptional target of the p53 tumor suppressor protein. Oncogene16, 1299–1308 (1998). ArticleCASPubMed Google Scholar
Cui, X. S. & Donehower, L. A. Differential gene expression in mouse mammary adenocarcinomas in the presence and absence of wild type p53. Oncogene19, 5988–5996 (2000). ArticleCASPubMed Google Scholar
Foulkes, W. D. et al. Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. J. Natl Cancer Inst.95, 1482–1485 (2003). ArticleCASPubMed Google Scholar
Elledge, S. J. & Amon, A. The BRCA1 suppressor hypothesis: an explanation for the tissue-specific tumor development in BRCA1 patients. Cancer Cell1, 129–132 (2002). ArticleCASPubMed Google Scholar
Xu, X. et al. Conditional mutation of Brca1 in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nature Genet.22, 37–43 (1999). ArticleCASPubMed Google Scholar
Cheung, A. M. et al. Brca2 deficiency does not impair mammary epithelium development but promotes mammary adenocarcinoma formation in p53+/− mutant mice. Cancer Res.64, 1959–1965 (2004). ArticleCASPubMed Google Scholar
Jonkers, J. et al. Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nature Genet.29, 418–425 (2001). ArticleCASPubMed Google Scholar
Wagner, K. U. et al. An adjunct mammary epithelial cell population in parous females: its role in functional adaptation and tissue renewal. Development129, 1377–1386 (2002). CASPubMed Google Scholar
Wagner, K. U. et al. Spatial and temporal expression of the Cre gene under the control of the MMTV-LTR in different lines of transgenic mice. Transgenic Res.10, 545–553 (2001). ArticleCASPubMed Google Scholar
Shen, Q. & Brown, P. H. Transgenic mouse models for the prevention of breast cancer. Mutat. Res.576, 93–110 (2005). ArticleCASPubMed Google Scholar
Derksen, P. W. et al. Somatic inactivation of E-cadherin and p53 in mice leads to metastatic lobular mammary carcinoma through induction of anoikis resistance and angiogenesis. Cancer Cell10, 437–449 (2006). ArticleCASPubMed Google Scholar
Kordon, E. C. & Smith, G. H. An entire functional mammary gland may comprise the progeny from a single cell. Development125, 1921–1930 (1998). CASPubMed Google Scholar
Teschendorff, A. E., Naderi, A., Barbosa-Morais, N. L. & Caldas, C. PACK: profile analysis using clustering and kurtosis to find molecular classifiers in cancer. Bioinformatics22, 2269–2275 (2006). ArticleCASPubMed Google Scholar
Teschendorff A. E., Miremadi A., Pinder S., Ellis I. O. & Caldas C. An immune response gene expression module identifies a good prognosis subtype in estrogen receptor negative breast cancer. Genome Biol.8, R157 (2007). ArticlePubMedPubMed CentralCAS Google Scholar