Normal tissue reactions to radiotherapy: towards tailoring treatment dose by genotype (original) (raw)
Savitsky, K. et al. The complete sequence of the coding region of the ATM gene reveals similarity to cell cycle regulators in different species. Hum. Mol. Genet.4, 2025–2032 (1995). ArticleCASPubMed Google Scholar
Andreassen, C. N. Can. risk of radiotherapy-induced normal tissue complications be predicted from genetic profiles? Acta Oncol.44, 801–815 (2005). ArticlePubMed Google Scholar
Alsner, J., Andreassen, C. N. & Overgaard, J. Genetic markers for prediction of normal tissue toxicity after radiotherapy. Semin. Radiat. Oncol.18, 126–135 (2008). ArticlePubMed Google Scholar
Easton, D. F. & Eeles, R. A. Genome-wide association studies in cancer. Hum. Mol. Genet.17, R109–R115 (2008). ArticleCASPubMed Google Scholar
Bentzen, S. M. Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology. Nature Rev. Cancer6, 702–713 (2006). ArticleCAS Google Scholar
Ringborg, U. et al. The Swedish Council on Technology Assessment in Health Care (SBU) systematic overview of radiotherapy for cancer including a prospective survey of radiotherapy practice in Sweden 2001 — summary and conclusions. Acta Oncol.42, 357–365 (2003). ArticlePubMed Google Scholar
Dawson, L. A. & Sharpe, M. B. Image-guided radiotherapy: rationale, benefits, and limitations. Lancet Oncol.7, 848–858 (2006). ArticlePubMed Google Scholar
van Herk, M. Different styles of image-guided radiotherapy. Semin. Radiat. Oncol.17, 258–267 (2007). ArticlePubMed Google Scholar
Glatstein, E. Intensity-modulated radiation therapy: the inverse, the converse, and the perverse. Semin. Radiat. Oncol.12, 272–281 (2002). ArticlePubMed Google Scholar
Hong, T. S., Ritter, M. A., Tome, W. A. & Harari, P. M. Intensity-modulated radiation therapy: emerging cancer treatment technology. Br. J. Cancer92, 1819–1824 (2005). ArticleCASPubMedPubMed Central Google Scholar
Moran, J. M., Elshaikh, M. A. & Lawrence, T. S. Radiotherapy: what can be achieved by technical improvements in dose delivery? Lancet Oncol.6, 51–58 (2005). ArticlePubMed Google Scholar
Ten Haken, R. K. & Lawrence, T. S. The clinical application of intensity-modulated radiation therapy. Semin. Radiat. Oncol.16, 224–231 (2006). ArticlePubMed Google Scholar
Dearnaley, D. et al. Conventional or hypofractionated high dose intensity modulated radiotherapy in prostate cancer: Preliminary report on acute and late toxicity. A phase III multicentre trial (CHHIP). ASCO Proceedings 2007 Abstract 303 (2007).
Bourhis, J. et al. Hyperfractionated or accelerated radiotherapy in head and neck cancer: a meta-analysis. Lancet368, 843–854 (2006). ArticlePubMed Google Scholar
Bonner, J. A. et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N. Engl. J. Med.354, 567–578 (2006). ArticleCASPubMed Google Scholar
O'Driscoll, M. & Jeggo, P. A. The role of double-strand break repair — insights from human genetics. Nature Rev. Genet.7, 45–54 (2006). ArticleCASPubMed Google Scholar
Petrini, J. H. & Stracker, T. H. The cellular response to DNA double-strand breaks: defining the sensors and mediators. Trends Cell Biol.13, 458–462 (2003). ArticleCASPubMed Google Scholar
Taylor, R. C., Cullen, S. P. & Martin, S. J. Apoptosis: controlled demolition at the cellular level. Nature Rev. Mol. Cell Biol.9, 231–241 (2008). ArticleCAS Google Scholar
Branzei, D. & Foiani, M. Regulation of DNA repair throughout the cell cycle. Nature Rev. Mol. Cell Biol.9, 297–308 (2008). ArticleCAS Google Scholar
Mikkelsen, R. B. & Wardman, P. Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms. Oncogene22, 5734–5754 (2003). ArticleCASPubMed Google Scholar
Robbins, M. E. & Diz, D. I. Pathogenic role of the renin-angiotensin system in modulating radiation-induced late effects. Int. J. Radiat. Oncol. Biol. Phys.64, 6–12 (2006). ArticleCASPubMed Google Scholar
Olsson, A. K., Dimberg, A., Kreuger, J. & Claesson-Welsh, L. VEGF receptor signalling — in control of vascular function. Nature Rev. Mol. Cell Biol.7, 359–371 (2006). ArticleCAS Google Scholar
Weis, S. M. Vascular permeability in cardiovascular disease and cancer. Curr. Opin. Hematol.15, 243–249 (2008). ArticleCASPubMed Google Scholar
Holthusen, H. Erfahrungen über die Verträglichkeitsgrenze für Röntgenstrahlen and deren Nutzanwendung zur Verhütung von Schäden. Strahlentherapie57, 254–269 (1936) (in German). Google Scholar
Burnet, N. G., Johansen, J., Turesson, I., Nyman, J. & Peacock, J. H. Describing patients' normal tissue reactions: concerning the possibility of individualising radiotherapy dose prescriptions based on potential predictive assays of normal tissue radiosensitivity. Steering Committee of the BioMed2 European Union Concerted Action Programme on the Development of Predictive Tests of Normal Tissue Response to Radiation Therapy. Int. J. Cancer79, 606–613 (1998). ArticleCASPubMed Google Scholar
Bentzen, S. M. & Overgaard, J. Patient-to-patient variability in the expression of radiation-induced normal tissue injury. Semin. Radiat. Oncol.4, 68–80 (1994). ArticleCASPubMed Google Scholar
Holscher, T., Bentzen, S. M. & Baumann, M. Influence of connective tissue diseases on the expression of radiation side effects: a systematic review. Radiother. Oncol.78, 123–130 (2006). ArticlePubMed Google Scholar
Coles, C. E. et al. Implementation of breast IMRT via a randomised control trial: a report of the first year's experience. Radiother. Oncol.73 (Suppl. 1), S15 (2004). Google Scholar
Bentzen, S. M. High-tech in radiation oncology: should there be a ceiling? Int. J. Radiat. Oncol. Biol. Phys.58, 320–330 (2004). ArticlePubMed Google Scholar
Turesson, I. Individual variation and dose dependency in the progression rate of skin telangiectasia. Int. J. Radiat. Oncol. Biol. Phys.19, 1569–1574 (1990). ArticleCASPubMed Google Scholar
Bentzen, S. M. et al. The UK Standardisation of Breast Radiotherapy (START) Trial A of radiotherapy hypofractionation for treatment of early breast cancer: a randomised trial. Lancet Oncol.9, 331–341 (2008). ArticleCASPubMed Google Scholar
Burnet, N. G., Wurm, R., Nyman, J. & Peacock, J. H. Normal tissue radiosensitivity — how important is it? Clin. Oncol. (R. Coll. Radiol.)8, 25–34 (1996). ArticleCAS Google Scholar
Turesson, I., Nyman, J., Holmberg, E. & Oden, A. Prognostic factors for acute and late skin reactions in radiotherapy patients. Int. J. Radiat. Oncol. Biol. Phys.36, 1065–1075 (1996). ArticleCASPubMed Google Scholar
Davidson, S. E. et al. Short report: a morbidity scoring system for Clinical Oncology practice: questionnaires produced from the LENT SOMA scoring system. Clin. Oncol. (R. Coll. Radiol.)14, 68–69 (2002). ArticleCAS Google Scholar
[No authors listed]. LENT SOMA scales for all anatomic sites. Int. J. Radiat. Oncol. Biol. Phys.31, 1049–1091 (1995).
Chassagne, D. et al. A glossary for reporting complications of treatment in gynecological cancers. Radiother. Oncol.26, 195–202 (1993). ArticleCASPubMed Google Scholar
Litwin, M. S. et al. The UCLA Prostate Cancer Index: development, reliability, and validity of a health-related quality of life measure. Med. Care36, 1002–1012 (1998). ArticleCASPubMed Google Scholar
Price, S. J. et al. Early radiotherapy dose response and lack of hypersensitivity effect in normal brain tissue: a sequential dynamic susceptibility imaging study of cerebral perfusion. Clin. Oncol. (R. Coll. Radiol.)19, 577–587 (2007). ArticleCAS Google Scholar
Giotopoulos, G. et al. The late radiotherapy normal tissue injury phenotypes of telangiectasia, fibrosis and atrophy in breast cancer patients have distinct genotype-dependent causes. Br. J. Cancer96, 1001–1007 (2007). ArticleCASPubMedPubMed Central Google Scholar
Johansson, S., Svensson, H. & Denekamp, J. Timescale of evolution of late radiation injury after postoperative radiotherapy of breast cancer patients. Int. J. Radiat. Oncol. Biol. Phys.48, 745–750 (2000). ArticleCASPubMed Google Scholar
Bentzen, S. M., Vaeth, M., Pedersen, D. E. & Overgaard, J. Why actuarial estimates should be used in reporting late normal-tissue effects of cancer treatment ... now! Int. J. Radiat. Oncol. Biol. Phys.32, 1531–1534 (1995). ArticleCASPubMed Google Scholar
Caplan, R. J., Pajak, T. F. & Cox, J. D. Analysis of the probability and risk of cause-specific failure. Int. J. Radiat. Oncol. Biol. Phys.29, 1183–1186 (1994). ArticleCASPubMed Google Scholar
Haie-Meder, C. et al. Analysis of complications in a prospective randomized trial comparing two brachytherapy low dose rates in cervical carcinoma. Int. J. Radiat. Oncol. Biol. Phys.29, 953–960 (1994). ArticleCASPubMed Google Scholar
Peters, L. J., Withers, H. R. & Brown, B. W. Complicating issues in complication reporting. Int. J. Radiat. Oncol. Biol. Phys.31, 1349–1351 (1995). ArticleCASPubMed Google Scholar
Taylor, A. M. et al. Ataxia telangiectasia: a human mutation with abnormal radiation sensitivity. Nature258, 427–429 (1975). ArticleCASPubMed Google Scholar
Woods, W. G., Byrne, T. D. & Kim, T. H. Sensitivity of cultured cells to gamma radiation in a patient exhibiting marked in vivo radiation sensitivity. Cancer62, 2341–2345 (1988). ArticleCASPubMed Google Scholar
Little, J. B. & Nove, J. Sensitivity of human diploid fibroblast cell strains from various genetic disorders to acute and protracted radiation exposure. Radiat. Res.123, 87–92 (1990). ArticleCASPubMed Google Scholar
Loeffler, J. S., Harris, J. R., Dahlberg, W. K. & Little, J. B. In vitro radiosensitivity of human diploid fibroblasts derived from women with unusually sensitive clinical responses to definitive radiation therapy for breast cancer. Radiat. Res.121, 227–231 (1990). ArticleCASPubMed Google Scholar
Plowman, P. N., Bridges, B. A., Arlett, C. F., Hinney, A. & Kingston, J. E. An instance of clinical radiation morbidity and cellular radiosensitivity, not associated with ataxia-telangiectasia. Br. J. Radiol.63, 624–628 (1990). ArticleCASPubMed Google Scholar
Alter, B. P. Radiosensitivity in Fanconi's anemia patients. Radiother. Oncol.62, 345–347 (2002). ArticlePubMed Google Scholar
Rogers, P. B., Plowman, P. N., Harris, S. J. & Arlett, C. F. Four radiation hypersensitivity cases and their implications for clinical radiotherapy. Radiother. Oncol.57, 143–154 (2000). ArticleCASPubMed Google Scholar
Leong, T., Borg, M. & McKay, M. Clinical and cellular radiosensitivity in inherited human syndromes. Clin. Oncol. (R. Coll. Radiol.)16, 206–209 (2004). ArticleCAS Google Scholar
Burnet, N. G. et al. Prediction of normal-tissue tolerance to radiotherapy from in-vitro cellular radiation sensitivity. Lancet339, 1570–1571 (1992). ArticleCASPubMed Google Scholar
Geara, F. B., Peters, L. J., Ang, K. K., Wike, J. L. & Brock, W. A. Prospective comparison of in vitro normal cell radiosensitivity and normal tissue reactions in radiotherapy patients. Int. J. Radiat. Oncol. Biol. Phys.27, 1173–1179 (1993). ArticleCASPubMed Google Scholar
Burnet, N. G. et al. The relationship between cellular radiation sensitivity and tissue response may provide the basis for individualising radiotherapy schedules. Radiother. Oncol.33, 228–238 (1994). ArticleCASPubMed Google Scholar
Johansen, J., Bentzen, S. M., Overgaard, J. & Overgaard, M. Relationship between the in vitro radiosensitivity of skin fibroblasts and the expression of subcutaneous fibrosis, telangiectasia, and skin erythema after radiotherapy. Radiother. Oncol.40, 101–109 (1996). ArticleCASPubMed Google Scholar
West, C. M. et al. Lymphocyte radiosensitivity is a significant prognostic factor for morbidity in carcinoma of the cervix. Int. J. Radiat. Oncol. Biol. Phys.51, 10–15 (2001). ArticleCASPubMed Google Scholar
Russell, N. S. et al. Low predictive value of intrinsic fibroblast radiosensitivity for fibrosis development following radiotherapy for breast cancer. Int. J. Radiat. Biol.73, 661–670 (1998). ArticleCASPubMed Google Scholar
Peacock, J. et al. Cellular radiosensitivity and complication risk after curative radiotherapy. Radiother. Oncol.55, 173–178 (2000). ArticleCASPubMed Google Scholar
Dikomey, E., Borgmann, K., Peacock, J. & Jung, H. Why recent studies relating normal tissue response to individual radiosensitivity might have failed and how new studies should be performed. Int. J. Radiat. Oncol. Biol. Phys.56, 1194–1200 (2003). ArticlePubMed Google Scholar
Dickson, J., Magee, B., Stewart, A. & West, C. M. Relationship between residual radiation-induced DNA double-strand breaks in cultured fibroblasts and late radiation reactions: a comparison of training and validation cohorts of breast cancer patients. Radiother. Oncol.62, 321–326 (2002). ArticleCASPubMed Google Scholar
Ozsahin, M. et al. CD4 and CD8 T-lymphocyte apoptosis can predict radiation-induced late toxicity: a prospective study in 399 patients. Clin. Cancer Res.11, 7426–7433 (2005). ArticleCASPubMed Google Scholar
West, C. M., Elliott, R. M. & Burnet, N. G. The genomics revolution and radiotherapy. Clin. Oncol. (R. Coll. Radiol.)19, 470–480 (2007). ArticleCAS Google Scholar
Kruse, J. J. & Stewart, F. A. Gene expression arrays as a tool to unravel mechanisms of normal tissue radiation injury and prediction of response. World J. Gastroenterol.13, 2669–2674 (2007). ArticleCASPubMedPubMed Central Google Scholar
Sonis, S. et al. Gene expression changes in peripheral blood cells provide insight into the biological mechanisms associated with regimen-related toxicities in patients being treated for head and neck cancers. Oral Oncol.43, 289–300 (2007). ArticleCASPubMed Google Scholar
Rieger, K. E. et al. Toxicity from radiation therapy associated with abnormal transcriptional responses to DNA damage. Proc. Natl Acad. Sci. USA101, 6635–6640 (2004). ArticleCASPubMedPubMed Central Google Scholar
Badie, C. et al. Aberrant CDKN1A transcriptional response associates with abnormal sensitivity to radiation treatment. Br. J. Cancer98, 1845–1851 (2008). ArticleCASPubMedPubMed Central Google Scholar
Quarmby, S. et al. Differential expression of cytokine genes in fibroblasts derived from skin biopsies of patients who developed minimal or severe normal tissue damage after radiotherapy. Radiat. Res.157, 243–248 (2002). ArticleCASPubMed Google Scholar
Svensson, J. P. et al. Analysis of gene expression using gene sets discriminates cancer patients with and without late radiation toxicity. PLoS Med.3, e422 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Rodningen, O. K., Borresen-Dale, A. L., Alsner, J., Hastie, T. & Overgaard, J. Radiation-induced gene expression in human subcutaneous fibroblasts is predictive of radiation-induced fibrosis. Radiother. Oncol.86, 314–320 (2008). ArticleCASPubMed Google Scholar
Beckmann, J. S., Estivill, X. & Antonarakis, S. E. Copy number variants and genetic traits: closer to the resolution of phenotypic to genotypic variability. Nature Rev. Genet.8, 639–646 (2007). ArticleCASPubMed Google Scholar
Stranger, B. E. et al. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science315, 848–853 (2007). ArticleCASPubMedPubMed Central Google Scholar
Hurles, M. E., Dermitzakis, E. T. & Tyler-Smith, C. The functional impact of structural variation in humans. Trends Genet.24, 238–245 (2008). ArticleCASPubMedPubMed Central Google Scholar
Mulero-Navarro, S. & Esteller, M. Epigenetic biomarkers for human cancer: the time is now. Crit. Rev. Oncol. Hematol.68, 1–11 (2008). ArticlePubMed Google Scholar
Quarmby, S. et al. Association of transforming growth factor beta-1 single nucleotide polymorphisms with radiation-induced damage to normal tissues in breast cancer patients. Int. J. Radiat. Biol.79, 137–143 (2003). ArticleCASPubMed Google Scholar
Andreassen, C. N., Alsner, J., Overgaard, M. & Overgaard, J. Prediction of normal tissue radiosensitivity from polymorphisms in candidate genes. Radiother. Oncol.69, 127–135 (2003). ArticleCASPubMed Google Scholar
Andreassen, C. N. et al. TGFB1 polymorphisms are associated with risk of late normal tissue complications in the breast after radiotherapy for early breast cancer. Radiother. Oncol.75, 18–21 (2005). ArticleCASPubMed Google Scholar
Andreassen, C. N., Alsner, J., Overgaard, M., Sorensen, F. B. & Overgaard, J. Risk of radiation-induced subcutaneous fibrosis in relation to single nucleotide polymorphisms in TGFB1, SOD2, XRCC1, XRCC3, APEX and ATM — a study based on DNA from formalin fixed paraffin embedded tissue samples. Int. J. Radiat. Biol.82, 577–586 (2006). ArticleCASPubMed Google Scholar
Baumann, M., Holscher, T. & Begg, A. C. Towards genetic prediction of radiation responses: ESTRO's GENEPI project. Radiother. Oncol.69, 121–125 (2003). ArticlePubMed Google Scholar
Burnet, N. G., Elliott, R. M., Dunning, A. & West, C. M. Radiosensitivity, radiogenomics and RAPPER. Clin. Oncol. (R. Coll. Radiol.)18, 525–528 (2006). ArticleCAS Google Scholar
Chanock, S. J. et al. Replicating genotype–phenotype associations. Nature447, 655–660 (2007). ArticleCASPubMed Google Scholar
Visscher, P. M., Andrew, T. & Nyholt, D. R. Genome-wide association studies of quantitative traits with related individuals: little (power) lost but much to be gained. Eur. J. Hum. Genet.16, 387–390 (2008). ArticleCASPubMed Google Scholar
Ma, L., Runesha, H. B., Dvorkin, D., Garbe, J. R. & Da, Y. Parallel and serial computing tools for testing single-locus and epistatic SNP effects of quantitative traits in genome-wide association studies. BMC Bioinformat.9, 315 (2008). ArticleCAS Google Scholar
Chambers, J. C. et al. Common genetic variation near MC4R is associated with waist circumference and insulin resistance. Nature Genet.40, 716–718 (2008). ArticleCASPubMed Google Scholar
Frayling, T. M. et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science316, 889–894 (2007). ArticleCASPubMedPubMed Central Google Scholar
Scuteri, A. et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet.3, e115 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Weedon, M. N. et al. Genome-wide association analysis identifies 20 loci that influence adult height. Nature Genet.40, 575–583 (2008). ArticleCASPubMed Google Scholar
Sanna, S. et al. Common variants in the GDF5-UQCC region are associated with variation in human height. Nature Genet.40, 198–203 (2008). ArticleCASPubMed Google Scholar
Lettre, G. et al. Identification of ten loci associated with height highlights new biological pathways in human growth. Nature Genet.40, 584–591 (2008). ArticleCASPubMed Google Scholar
Kooner, J. S. et al. Genome-wide scan identifies variation in MLXIPL associated with plasma triglycerides. Nature Genet.40, 149–151 (2008). ArticleCASPubMed Google Scholar
Kathiresan, S. et al. A genome-wide association study for blood lipid phenotypes in the Framingham Heart Study. BMC Med. Genet.8 (Suppl. 1), S17 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Saxena, R. et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science316, 1331–1336 (2007). ArticleCASPubMed Google Scholar
Flint, J. & Munafo, M. R. The endophenotype concept in psychiatric genetics. Psychol. Med.37, 163–180 (2007). ArticlePubMed Google Scholar
Newton-Cheh, C. et al. Genome-wide association study of electrocardiographic and heart rate variability traits: the Framingham Heart Study. BMC Med. Genet.8 (Suppl. 1), S7 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Mohlke, K. L., Boehnke, M. & Abecasis, G. R. Metabolic and cardiovascular traits: an abundance of recently identified common genetic variants. Hum. Mol. Genet.17, R102–R108 (2008). ArticleCASPubMedPubMed Central Google Scholar
Feijen, M., Gerritsen, J. & Postma, D. S. Genetics of allergic disease. Br. Med. Bull.56, 894–907 (2000). ArticleCASPubMed Google Scholar
Scott, D. Chromosomal radiosensitivity and low penetrance predisposition to cancer. Cytogenet. Genome Res.104, 365–370 (2004). ArticleCASPubMed Google Scholar
Roberts, S. A. et al. Heritability of cellular radiosensitivity: a marker of low-penetrance predisposition genes in breast cancer? Am. J. Hum. Genet.65, 784–794 (1999). ArticleCASPubMedPubMed Central Google Scholar
Wu, X. et al. Mutagen sensitivity has high heritability: evidence from a twin study. Cancer Res.66, 5993–5996 (2006). ArticleCASPubMed Google Scholar
Borgmann, K. et al. Genetic determination of chromosomal radiosensitivities in G0- and G2-phase human lymphocytes. Radiother. Oncol.83, 196–202 (2007). ArticleCASPubMed Google Scholar
Finnon, P. et al. Evidence for significant heritability of apoptotic and cell cycle responses to ionising radiation. Hum. Genet.123, 485–493 (2008). ArticlePubMed Google Scholar
Curwen, G. B. et al. G2 chromosomal radiosensitivity in Danish survivors of childhood and adolescent cancer and their offspring. Br. J. Cancer93, 1038–1045 (2005). ArticleCASPubMedPubMed Central Google Scholar
Schmitz, A., Bayer, J., Dechamps, N., Goldin, L. & Thomas, G. Heritability of susceptibility to ionizing radiation-induced apoptosis of human lymphocyte subpopulations. Int. J. Radiat. Oncol. Biol. Phys.68, 1169–1177 (2007). ArticleCASPubMedPubMed Central Google Scholar
Pharoah, P. D., Antoniou, A. C., Easton, D. F. & Ponder, B. A. Polygenes, risk prediction, and targeted prevention of breast cancer. N. Engl. J. Med.358, 2796–2803 (2008). ArticleCASPubMed Google Scholar
Janssens, A. C. & van Duijn, C. M. Genome-based prediction of common diseases: advances and prospects. Hum. Mol. Genet.17, R166–R173 (2008). ArticleCASPubMed Google Scholar
Suit, H. The Gray Lecture 2001: coming technical advances in radiation oncology. Int. J. Radiat. Oncol. Biol. Phys.53, 798–809 (2002). ArticlePubMed Google Scholar
Horiot, J. C. et al. Hyperfractionation versus conventional fractionation in oropharyngeal carcinoma: final analysis of a randomized trial of the EORTC cooperative group of radiotherapy. Radiother. Oncol.25, 231–241 (1992). ArticleCASPubMed Google Scholar
Clarke, M. et al. Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet366, 2087–2106 (2005). ArticleCASPubMed Google Scholar
Nyman, J. Thesis. Normal Skin Reactions in Radiotherapy: Proliferation, Progression and Prognostic Factors, Univ. Gothenburg (1995). Google Scholar
West, C. M. & Hendry, J. H. Intrinsic radiosensitivity as a predictor of patient response to radiotherapy. BJR Suppl.24, 146–152 (1992). CASPubMed Google Scholar
West, C. M. et al. The intrinsic radiosensitivity of normal and tumour cells. Int. J. Radiat. Biol.73, 409–413 (1998). ArticleCASPubMed Google Scholar
Hart, R. M., Kimler, B. F., Evans, R. G. & Park, C. H. Radiotherapeutic management of medulloblastoma in a pediatric patient with ataxia telangiectasia. Int. J. Radiat. Oncol. Biol. Phys.13, 1237–1240 (1987). ArticleCASPubMed Google Scholar
Agren, A., Brahme, A. & Turesson, I. Optimization of uncomplicated control for head and neck tumors. Int. J. Radiat. Oncol. Biol. Phys.19, 1077–1085 (1990). ArticleCASPubMed Google Scholar
Abraham, J., Earl, H. M., Pharoah, P. D. & Caldas, C. Pharmacogenetics of cancer chemotherapy. Biochim. Biophys. Acta1766, 168–183 (2006). CASPubMed Google Scholar
Hopewell, J. W. & Trott, K. R. Volume effects in radiobiology as applied to radiotherapy. Radiother. Oncol.56, 283–288 (2000). ArticleCASPubMed Google Scholar
Thomas, D. C., Haile, R. W. & Duggan, D. Recent developments in genomewide association scans: a workshop summary and review. Am. J. Hum. Genet.77, 337–345 (2005). ArticleCASPubMedPubMed Central Google Scholar
Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature447, 661–678 (2007).
Eeles, R. A. et al. Multiple newly identified loci associated with prostate cancer susceptibility. Nature Genet.40, 316–332 (2008). ArticleCASPubMed Google Scholar
Tomlinson, I. et al. A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21. Nature Genet.39, 984–988 (2007). ArticleCASPubMed Google Scholar
Broderick, P. et al. A genome-wide association study shows that common alleles of SMAD7 influence colorectal cancer risk. Nature Genet.39, 1315–1317 (2007). ArticleCASPubMed Google Scholar
Kato, N. et al. High-density association study and nomination of susceptibility genes for hypertension in the Japanese National Project. Hum. Mol. Genet.17, 617–627 (2008). ArticleCASPubMed Google Scholar
Levy, D. et al. Framingham Heart Study 100K Project: genome-wide associations for blood pressure and arterial stiffness. BMC Med. Genet.8 (Suppl. 1), S3 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Turesson, I. & Thames, H. D. Repair capacity and kinetics of human skin during fractionated radiotherapy: erythema, desquamation, and telangiectasia after 3 and 5 year's follow-up. Radiother. Oncol.15, 169–188 (1989). ArticleCASPubMed Google Scholar
Schultheiss, T. E. The radiation dose-response of the human spinal cord. Int. J. Radiat. Oncol. Biol. Phys.71, 1455–1459 (2008). ArticlePubMed Google Scholar
Bentzen, S. M. & Overgaard, M. Relationship between early and late normal-tissue injury after postmastectomy radiotherapy. Radiother. Oncol.20, 159–165 (1991). ArticleCASPubMed Google Scholar
Bentzen, S. M., Overgaard, M. & Overgaard, J. Clinical correlations between late normal tissue endpoints after radiotherapy: implications for predictive assays of radiosensitivity. Eur. J. Cancer29A, 1373–1376 (1993). ArticleCASPubMed Google Scholar