KRAS, Hedgehog, Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma (original) (raw)
Hezel, A. F., Kimmelman, A. C., Stanger, B. Z., Bardeesy, N. & Depinho, R. A. Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev.20, 1218–1249 (2006). ArticleCASPubMed Google Scholar
Corcoran, R. B. & Scott, M. P. A mouse model for medulloblastoma and basal cell nevus syndrome. J. Neurooncol.53, 307–318 (2001). ArticleCASPubMed Google Scholar
Romer, J. T. et al. Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1+/−p53−/− mice. Cancer Cell6, 229–240 (2004). ArticleCASPubMed Google Scholar
Taketo, M. M. & Edelmann, W. Mouse models of colon cancer. Gastroenterology136, 780–798 (2009). ArticleCASPubMed Google Scholar
Habbe, N., Langer, P., Sina-Frey, M. & Bartsch, D. K. Familial pancreatic cancer syndromes. Endocrinol. Metab. Clin. North Am.35, 417–430 (2006). ArticleCASPubMed Google Scholar
Wescott, M. P. & Rustgi, A. K. Pancreatic cancer: translating lessons from mouse models and hereditary syndromes. Cancer Prev. Res.1, 503–506 (2008). ArticleCAS Google Scholar
Almoguera, C. et al. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell53, 549–554 (1988). ArticleCASPubMed Google Scholar
Caldas, C. et al. Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma. Nature Genet.8, 27–32 (1994). ArticleCASPubMed Google Scholar
Ruggeri, B. et al. Human pancreatic carcinomas and cell lines reveal frequent and multiple alterations in the p53 and Rb-1 tumor-suppressor genes. Oncogene7, 1503–1511 (1992). CASPubMed Google Scholar
Scarpa, A. et al. Pancreatic adenocarcinomas frequently show p53 gene mutations. Am. J. Pathol.142, 1534–1543 (1993). CASPubMedPubMed Central Google Scholar
Hahn, S. A. et al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science271, 350–353 (1996). ArticleCASPubMed Google Scholar
Rodriguez-Viciana, P. et al. Cancer targets in the Ras pathway. Cold Spring Harb. Symp. Quant. Biol.70, 461–467 (2005). ArticleCASPubMed Google Scholar
Jones, S. et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science321, 1801–1806 (2008). ArticleCASPubMedPubMed Central Google Scholar
Hruban, R. H., Maitra, A., Kern, S. E. & Goggins, M. Precursors to pancreatic cancer. Gastroenterol. Clin. North Am.36, 831–849, vi (2007). ArticlePubMedPubMed Central Google Scholar
Hruban, R. H. et al. An illustrated consensus on the classification of pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms. Am. J. Surg. Pathol.28, 977–987 (2004). ArticlePubMed Google Scholar
Feldmann, G., Beaty, R., Hruban, R. H. & Maitra, A. Molecular genetics of pancreatic intraepithelial neoplasia. J. Hepatobiliary Pancreat. Surg.14, 224–232 (2007). ArticlePubMedPubMed Central Google Scholar
Lohr, M., Kloppel, G., Maisonneuve, P., Lowenfels, A. B. & Luttges, J. Frequency of K-ras mutations in pancreatic intraductal neoplasias associated with pancreatic ductal adenocarcinoma and chronic pancreatitis: a meta-analysis. Neoplasia7, 17–23 (2005). ArticlePubMedPubMed CentralCAS Google Scholar
Maitra, A. et al. Multicomponent analysis of the pancreatic adenocarcinoma progression model using a pancreatic intraepithelial neoplasia tissue microarray. Mod. Pathol.16, 902–912 (2003). ArticlePubMed Google Scholar
Wilentz, R. E. et al. Loss of expression of Dpc4 in pancreatic intraepithelial neoplasia: evidence that DPC4 inactivation occurs late in neoplastic progression. Cancer Res.60, 2002–2006 (2000). CASPubMed Google Scholar
Grippo, P. J., Nowlin, P. S., Demeure, M. J., Longnecker, D. S. & Sandgren, E. P. Preinvasive pancreatic neoplasia of ductal phenotype induced by acinar cell targeting of mutant Kras in transgenic mice. Cancer Res.63, 2016–2019 (2003). CASPubMed Google Scholar
Brembeck, F. H. et al. The mutant K-ras oncogene causes pancreatic periductal lymphocytic infiltration and gastric mucous neck cell hyperplasia in transgenic mice. Cancer Res.63, 2005–2009 (2003). CASPubMed Google Scholar
Tuveson, D. A. et al. Endogenous oncogenic K-rasG12D stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell5, 375–387 (2004). ArticleCASPubMed Google Scholar
Hingorani, S. R. et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell4, 437–450 (2003). The first example of a conditionalKras- driven PDAC mouse model that recapitulates the progression observed in humans. ArticleCASPubMed Google Scholar
Guerra, C. et al. Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell11, 291–302 (2007). The first direct functional demonstration that PDAC can arise from non-ductal cells. This paper also established a functional link between pancreatitis and PDAC initiation and progression. ArticleCASPubMed Google Scholar
Habbe, N. et al. Spontaneous induction of murine pancreatic intraepithelial neoplasia (mPanIN) by acinar cell targeting of oncogenic Kras in adult mice. Proc. Natl Acad. Sci. USA105, 18913–18918 (2008). This study provided evidence that mutantKrasis sufficient to reprogram acini into the PanIN lineage in the absence of tissue damage. ArticleCASPubMedPubMed Central Google Scholar
De La O, J. et al. Notch and Kras reprogram pancreatic acinar cells to ductal intraepithelial neoplasia. Proc. Natl Acad. Sci. USA105, 18907–18912 (2008). ArticleCASPubMedPubMed Central Google Scholar
Shi, G. et al. Loss of the acinar-restricted transcription factor Mist1 accelerates Kras-induced pancreatic intraepithelial neoplasia. Gastroenterology136, 1368–1378 (2009). ArticleCASPubMed Google Scholar
Ji, B. et al. Ras activity levels control the development of pancreatic diseases. Gastroenterology137, 1072–1082, e6 (2009). ArticleCASPubMed Google Scholar
Morris, J. P. 4th, Cano, D. A., Sekine, S., Wang, S. C. & Hebrok, M. β-catenin blocks Kras-dependent reprogramming of acini into pancreatic cancer precursor lesions in mice. J. Clin. Invest.120, 508–520 (2010). ArticleCASPubMedPubMed Central Google Scholar
Gidekel Friedlander, S. Y. et al. Context-dependent transformation of adult pancreatic cells by oncogenic K-Ras. Cancer Cell16, 379–389 (2009). This study provided evidence that mutantKrascombined with chronic pancreatitis can drive endocrine cells into the PanIN–PDAC lineage. ArticlePubMedPubMed CentralCAS Google Scholar
Aguirre, A. J. et al. Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev.17, 3112–3126 (2003). ArticleCASPubMedPubMed Central Google Scholar
Bardeesy, N. et al. Both p16Ink4a and the p19Arf–p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse. Proc. Natl Acad. Sci. USA103, 5947–5952 (2006). ArticleCASPubMedPubMed Central Google Scholar
Hingorani, S. R. et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell7, 469–483 (2005). Mutant p53 drives both PDAC progression and the development of metastasis and genomic instability, which are hallmarks of the human disease. ArticleCASPubMed Google Scholar
Bardeesy, N. et al. Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes Dev.20, 3130–3146 (2006). ArticleCASPubMedPubMed Central Google Scholar
Ijichi, H. et al. Aggressive pancreatic ductal adenocarcinoma in mice caused by pancreas-specific blockade of transforming growth factor-β signaling in cooperation with active Kras expression. Genes Dev.20, 3147–3160 (2006). ArticleCASPubMedPubMed Central Google Scholar
Izeradjene, K. et al. KrasG12D and Smad4/Dpc4 haploinsufficiency cooperate to induce mucinous cystic neoplasms and invasive adenocarcinoma of the pancreas. Cancer Cell11, 229–243 (2007). ArticleCASPubMed Google Scholar
Kojima, K. et al. Inactivation of Smad4 accelerates KrasG12D-mediated pancreatic neoplasia. Cancer Res.67, 8121–8130 (2007). ArticleCASPubMed Google Scholar
Vincent, D. F. et al. Inactivation of TIF1γ cooperates with Kras to induce cystic tumors of the pancreas. PLoS Genet.5, e1000575 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Quint, E. et al. Bone patterning is altered in the regenerating zebrafish caudal fin after ectopic expression of sonic hedgehog and bmp2b or exposure to cyclopamine. Proc. Natl Acad. Sci. USA99, 8713–8718 (2002). ArticleCASPubMedPubMed Central Google Scholar
Karhadkar, S. S. et al. Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature431, 707–712 (2004). ArticleCASPubMed Google Scholar
Stecca, B. & Ruiz i Altaba, A. Brain as a paradigm of organ growth: Hedgehog–Gli signaling in neural stem cells and brain tumors. J. Neurobiol.64, 476–490 (2005). ArticleCASPubMed Google Scholar
Liu, S. et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res.66, 6063–6071 (2006). ArticleCASPubMedPubMed Central Google Scholar
Li, N. et al. Reciprocal intraepithelial interactions between TP63 and hedgehog signaling regulate quiescence and activation of progenitor elaboration by mammary stem cells. Stem Cells26, 1253–1264 (2008). ArticleCASPubMedPubMed Central Google Scholar
Hooper, J. E. & Scott, M. P. Communicating with Hedgehogs. Nature Rev. Mol. Cell Biol.6, 306–317 (2005). ArticleCAS Google Scholar
Pan, Y., Bai, C. B., Joyner, A. L. & Wang, B. Sonic hedgehog signaling regulates Gli2 transcriptional activity by suppressing its processing and degradation. Mol. Cell. Biol.26, 3365–3377 (2006). ArticleCASPubMedPubMed Central Google Scholar
Wang, B., Fallon, J. F. & Beachy, P. A. Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell100, 423–434 (2000). ArticleCASPubMed Google Scholar
Kenney, A. M. & Rowitch, D. H. Sonic hedgehog promotes G1 cyclin expression and sustained cell cycle progression in mammalian neuronal precursors. Mol. Cell. Biol.20, 9055–9067 (2000). ArticleCASPubMedPubMed Central Google Scholar
Mill, P. et al. Shh controls epithelial proliferation via independent pathways that converge on N-Myc. Dev. Cell9, 293–303 (2005). ArticleCASPubMed Google Scholar
Regl, G. et al. Activation of the BCL2 promoter in response to Hedgehog/GLI signal transduction is predominantly mediated by GLI2. Cancer Res.64, 7724–7731 (2004). ArticleCASPubMed Google Scholar
Teh, M. T. et al. FOXM1 is a downstream target of Gli1 in basal cell carcinomas. Cancer Res.62, 4773–4780 (2002). CASPubMed Google Scholar
Brancaccio, A. et al. Requirement of the forkhead gene Foxe1, a target of sonic hedgehog signaling, in hair follicle morphogenesis. Hum. Mol. Genet.13, 2595–2606 (2004). ArticleCASPubMed Google Scholar
Rubin, L. L. & de Sauvage, F. J. Targeting the Hedgehog pathway in cancer. Nature Rev. Drug Discov.5, 1026–1033 (2006). ArticleCAS Google Scholar
Hahn, H. et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell85, 841–851 (1996). ArticleCASPubMed Google Scholar
Xie, J. et al. Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature391, 90–92 (1998). ArticleCASPubMed Google Scholar
Raffel, C. et al. Sporadic medulloblastomas contain PTCH mutations. Cancer Res.57, 842–845 (1997). CASPubMed Google Scholar
Thayer, S. P. et al. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature425, 851–856 (2003). Hh ligands are frequently overexpressed in human PDAC, and enforced Hh ligand expression during pancreatic development can lead to elements of PDAC initiation. ArticleCASPubMedPubMed Central Google Scholar
Feldmann, G. et al. An orally bioavailable small-molecule inhibitor of Hedgehog signaling inhibits tumor initiation and metastasis in pancreatic cancer. Mol. Cancer Ther.7, 2725–2735 (2008). ArticleCASPubMedPubMed Central Google Scholar
Feldmann, G. et al. Hedgehog inhibition prolongs survival in a genetically engineered mouse model of pancreatic cancer. Gut57, 1420–1430 (2008). ArticleCASPubMed Google Scholar
Feldmann, G. et al. Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers. Cancer Res.67, 2187–2196 (2007). ArticleCASPubMedPubMed Central Google Scholar
Olive, K. P. et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science324, 1457–1461 (2009). SMO inhibition increases accessibility of chemotherapeutic agents and decreases the fibroblast compartment in a mouse model of PDAC. ArticleCASPubMedPubMed Central Google Scholar
Yauch, R. L. et al. A paracrine requirement for hedgehog signalling in cancer. Nature455, 406–410 (2008). PDAC cells do not respond to Hh ligand or SMO inhibition. This study provides evidence that Hh ligand activates the signalling cascade in cells in the tumour microenvironment, providing paracrine tumour support. ArticleCASPubMed Google Scholar
Tian, H. et al. Hedgehog signaling is restricted to the stromal compartment during pancreatic carcinogenesis. Proc. Natl Acad. Sci. USA106, 4254–4259 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kalluri, R. & Zeisberg, M. Fibroblasts in cancer. Nature Rev. Cancer6, 392–401 (2006). ArticleCAS Google Scholar
Olumi, A. F. et al. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res.59, 5002–5011 (1999). CASPubMed Google Scholar
Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell121, 335–348 (2005). ArticleCASPubMed Google Scholar
Bachem, M. G. et al. Pancreatic carcinoma cells induce fibrosis by stimulating proliferation and matrix synthesis of stellate cells. Gastroenterology128, 907–921 (2005). ArticleCASPubMed Google Scholar
Vonlaufen, A. et al. Pancreatic stellate cells: partners in crime with pancreatic cancer cells. Cancer Res.68, 2085–2093 (2008). ArticleCASPubMed Google Scholar
Bailey, J. M., Mohr, A. M. & Hollingsworth, M. A. Sonic hedgehog paracrine signaling regulates metastasis and lymphangiogenesis in pancreatic cancer. Oncogene28, 3513–3525 (2009). ArticleCASPubMedPubMed Central Google Scholar
Menke, A. et al. Down-regulation of E-cadherin gene expression by collagen type I and type III in pancreatic cancer cell lines. Cancer Res.61, 3508–3517 (2001). CASPubMed Google Scholar
Armstrong, T. et al. Type I collagen promotes the malignant phenotype of pancreatic ductal adenocarcinoma. Clin. Cancer Res.10, 7427–7437 (2004). ArticleCASPubMed Google Scholar
Shintani, Y., Hollingsworth, M. A., Wheelock, M. J. & Johnson, K. R. Collagen I promotes metastasis in pancreatic cancer by activating c-Jun NH2-terminal kinase 1 and up-regulating N-cadherin expression. Cancer Res.66, 11745–11753 (2006). ArticleCASPubMed Google Scholar
Koenig, A., Mueller, C., Hasel, C., Adler, G. & Menke, A. Collagen type I induces disruption of E-cadherin-mediated cell–cell contacts and promotes proliferation of pancreatic carcinoma cells. Cancer Res.66, 4662–4671 (2006). ArticleCASPubMed Google Scholar
Nakamura, K. et al. Hedgehog promotes neovascularization in pancreatic cancers by regulating Ang-1 and IGF-1 expression in bone-marrow derived pro-angiogenic cells. PLoS ONE5, e8824 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Burris, H. A. . et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J. Clin. Oncol.15, 2403–2413 (1997). ArticleCASPubMed Google Scholar
Tempero, M. et al. Randomized Phase II comparison of dose-intense gemcitabine: thirty-minute infusion and fixed dose rate infusion in patients with pancreatic adenocarcinoma. J. Clin. Oncol.21, 3402–3408 (2003). ArticleCASPubMed Google Scholar
Tsuda, N. et al. Synthetic microRNA designed to target glioma-associated antigen 1 transcription factor inhibits division and induces late apoptosis in pancreatic tumor cells. Clin. Cancer Res.12, 6557–6564 (2006). ArticleCASPubMed Google Scholar
Lauth, M., Bergstrom, A., Shimokawa, T. & Toftgard, R. Inhibition of GLI-mediated transcription and tumor cell growth by small-molecule antagonists. Proc. Natl Acad. Sci. USA104, 8455–8460 (2007). ArticleCASPubMedPubMed Central Google Scholar
Nolan-Stevaux, O. et al. GLI1 is regulated through Smoothened-independent mechanisms in neoplastic pancreatic ducts and mediates PDAC cell survival and transformation. Genes Dev.23, 24–36 (2009). KRAS-driven PDAC develops in the absence of smoothened expression. However, aberrant Hh ligand expression and epithelial Gli signalling remain present, suggesting that they are uncoupled during PDAC development. ArticleCASPubMedPubMed Central Google Scholar
Ji, Z., Mei, F. C., Xie, J. & Cheng, X. Oncogenic KRAS activates Hedgehog signaling pathway in pancreatic cancer cells. J. Biol. Chem.282, 14048–14055 (2007). ArticleCASPubMed Google Scholar
Dennler, S. et al. Induction of sonic hedgehog mediators by transforming growth factor-β: Smad3-dependent activation of Gli2 and Gli1 expression in vitro and in vivo. Cancer Res.67, 6981–6986 (2007). ArticleCASPubMed Google Scholar
Apelqvist, A., Ahlgren, U. & Edlund, H. Sonic hedgehog directs specialised mesoderm differentiation in the intestine and pancreas. Curr. Biol.7, 801–804 (1997). ArticleCASPubMed Google Scholar
Schwartz, A. L. et al. Phenylmethimazole decreases Toll-like receptor 3 and noncanonical Wnt5a expression in pancreatic cancer and melanoma together with tumor cell growth and migration. Clin. Cancer Res.15, 4114–4122 (2009). ArticleCASPubMedPubMed Central Google Scholar
Pilarsky, C. et al. Activation of Wnt signalling in stroma from pancreatic cancer identified by gene expression profiling. J. Cell. Mol. Med.12, 2823–2835 (2008). ArticleCASPubMedPubMed Central Google Scholar
Segditsas, S. & Tomlinson, I. Colorectal cancer and genetic alterations in the Wnt pathway. Oncogene25, 7531–7537 (2006). ArticleCASPubMed Google Scholar
Seymour, A. B. et al. Allelotype of pancreatic adenocarcinoma. Cancer Res.54, 2761–2764 (1994). CASPubMed Google Scholar
Gerdes, B. et al. Analysis of β-catenin gene mutations in pancreatic tumors. Digestion60, 544–548 (1999). ArticleCASPubMed Google Scholar
Abraham, S. C. et al. Solid-pseudopapillary tumors of the pancreas are genetically distinct from pancreatic ductal adenocarcinomas and almost always harbor β-catenin mutations. Am. J. Pathol.160, 1361–1369 (2002). ArticleCASPubMedPubMed Central Google Scholar
Al-Aynati, M. M., Radulovich, N., Riddell, R. H. & Tsao, M. S. Epithelial-cadherin and β-catenin expression changes in pancreatic intraepithelial neoplasia. Clin. Cancer Res.10, 1235–1240 (2004). ArticleCASPubMed Google Scholar
Wang, L. et al. Oncogenic function of ATDC in pancreatic cancer through Wnt pathway activation and β-catenin stabilization. Cancer Cell15, 207–219 (2009). Cell autonomous ATDC supports β-catenin accumulation and signalling during PDAC development and impacts tumour cell proliferation and transformed characteristics. ArticleCASPubMedPubMed Central Google Scholar
Froeling, F. E. et al. Organotypic culture model of pancreatic cancer demonstrates that stromal cells modulate E-cadherin, β-catenin, and Ezrin expression in tumor cells. Am. J. Pathol.175, 636–648 (2009). ArticleCASPubMedPubMed Central Google Scholar
Nawroth, R. et al. Extracellular sulfatases, elements of the Wnt signaling pathway, positively regulate growth and tumorigenicity of human pancreatic cancer cells. PLoS ONE2, e392 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Takahashi, N. et al. Dickkopf-1 is overexpressed in human pancreatic ductal adenocarcinoma cells and is involved in invasive growth. Int. J. Cancer126, 1611–1620 (2009). Google Scholar
Kemler, R. et al. Stabilization of β-catenin in the mouse zygote leads to premature epithelial–mesenchymal transition in the epiblast. Development131, 5817–5824 (2004). ArticleCASPubMed Google Scholar
Heiser, P. W., Lau, J., Taketo, M. M., Herrera, P. L. & Hebrok, M. Stabilization of β-catenin impacts pancreas growth. Development133, 2023–2032 (2006). ArticleCASPubMed Google Scholar
Strom, A. et al. Unique mechanisms of growth regulation and tumor suppression upon Apc inactivation in the pancreas. Development134, 2719–2725 (2007). ArticleCASPubMed Google Scholar
Heiser, P. W. et al. Stabilization of β-catenin induces pancreas tumor formation. Gastroenterology135, 1288–1300 (2008). ArticleCASPubMed Google Scholar
Nishimori, I. et al. Non-cystic solid-pseudopapillary tumor of the pancreas showing nuclear accumulation and activating gene mutation of β-catenin. Pathol. Int.56, 707–711 (2006). ArticleCASPubMed Google Scholar
Janssen, K. P. et al. APC and oncogenic KRAS are synergistic in enhancing Wnt signaling in intestinal tumor formation and progression. Gastroenterology131, 1096–1109 (2006). ArticleCASPubMed Google Scholar
Sansom, O. J. et al. Loss of Apc allows phenotypic manifestation of the transforming properties of an endogenous K-ras oncogene in vivo. Proc. Natl Acad. Sci. USA103, 14122–14127 (2006). ArticleCASPubMedPubMed Central Google Scholar
Lowenfels, A. B. et al. Pancreatitis and the risk of pancreatic cancer. International Pancreatitis Study Group. N. Engl. J. Med.328, 1433–1437 (1993). ArticleCASPubMed Google Scholar
Fendrich, V. et al. Hedgehog signaling is required for effective regeneration of exocrine pancreas. Gastroenterology135, 621–631 (2008). This study demonstrated that acinar cells regenerate from pre-existing acinar cells through ductal intermediates following chemically induced pancreatitis. ArticleCASPubMed Google Scholar
Jensen, J. N. et al. Recapitulation of elements of embryonic development in adult mouse pancreatic regeneration. Gastroenterology128, 728–741 (2005). This study provided evidence that embryonic signalling pathways are reactivated during acinar regeneration following chemically induced pancreatitis. ArticleCASPubMed Google Scholar
Desai, B. M. et al. Preexisting pancreatic acinar cells contribute to acinar cell, but not islet β cell, regeneration. J. Clin. Invest.117, 971–977 (2007). ArticleCASPubMedPubMed Central Google Scholar
Zhu, L., Shi, G., Schmidt, C. M., Hruban, R. H. & Konieczny, S. F. Acinar cells contribute to the molecular heterogeneity of pancreatic intraepithelial neoplasia. Am. J. Pathol.171, 263–273 (2007). ArticleCASPubMedPubMed Central Google Scholar
Siveke, J. T. et al. Concomitant pancreatic activation of KrasG12D and Tgfa results in cystic papillary neoplasms reminiscent of human IPMN. Cancer Cell12, 266–279 (2007). ArticleCASPubMed Google Scholar
Elghazi, L. et al. Regulation of pancreas plasticity and malignant transformation by Akt signaling. Gastroenterology136, 1091–1103 (2009). ArticleCASPubMed Google Scholar
Carriere, C., Young, A. L., Gunn, J. R., Longnecker, D. S. & Korc, M. Acute pancreatitis markedly accelerates pancreatic cancer progression in mice expressing oncogenic Kras. Biochem. Biophys. Res. Commun.382, 561–565 (2009). ArticleCASPubMedPubMed Central Google Scholar
Siveke, J. T. et al. Notch signaling is required for exocrine regeneration after acute pancreatitis. Gastroenterology134, 544–555 (2008). ArticleCASPubMed Google Scholar
Strobel, O. et al. In vivo lineage tracing defines the role of acinar-to-ductal transdifferentiation in inflammatory ductal metaplasia. Gastroenterology133, 1999–2009 (2007). ArticlePubMed Google Scholar
Strobel, O. et al. Pancreatic duct glands are distinct ductal compartments that react to chronic injury and mediate Shh-induced metaplasia. Gastroenterology138, 1166–1177. ArticlePubMed Google Scholar
Means, A. L. et al. Pancreatic epithelial plasticity mediated by acinar cell transdifferentiation and generation of nestin-positive intermediates. Development132, 3767–3776 (2005). ArticleCASPubMed Google Scholar
Miyamoto, Y. et al. Notch mediates TGF α-induced changes in epithelial differentiation during pancreatic tumorigenesis. Cancer Cell3, 565–576 (2003). ArticleCASPubMed Google Scholar
Sawey, E. T., Johnson, J. A. & Crawford, H. C. Matrix metalloproteinase 7 controls pancreatic acinar cell transdifferentiation by activating the Notch signaling pathway. Proc. Natl Acad. Sci. USA104, 19327–19332 (2007). ArticleCASPubMedPubMed Central Google Scholar
Miyatsuka, T. et al. Persistent expression of PDX-1 in the pancreas causes acinar-to-ductal metaplasia through Stat3 activation. Genes Dev.20, 1435–1440 (2006). ArticleCASPubMedPubMed Central Google Scholar
Zhu, L. et al. Inhibition of Mist1 homodimer formation induces pancreatic acinar-to-ductal metaplasia. Mol. Cell. Biol.24, 2673–2681 (2004). ArticleCASPubMedPubMed Central Google Scholar
Hanlon, L. et al. Notch1 functions as a tumor suppressor in a model of K-ras-induced pancreatic ductal adenocarcinoma. Cancer Res.70, 4280–4286 (2010). ArticleCASPubMedPubMed Central Google Scholar
Hruban, R. H., Goggins, M., Parsons, J. & Kern, S. E. Progression model for pancreatic cancer. Clin. Cancer Res.6, 2969–2972 (2000). CASPubMed Google Scholar
Carrière, C., Seeley, E. S., Goetze, T., Longnecker, D. S. & Korc, M. The Nestin progenitor lineage is the compartment of origin for pancreatic intraepithelial neoplasia. Proc. Natl Acad. Sci. USA104, 4437–4442 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Mao, J. et al. A novel somatic mouse model to survey tumorigenic potential applied to the Hedgehog pathway. Cancer Res.66, 10171–10178 (2006). ArticleCASPubMedPubMed Central Google Scholar
Romero, D., Iglesias, M., Vary, C. P. & Quintanilla, M. Functional blockade of Smad4 leads to a decrease in β-catenin levels and signaling activity in human pancreatic carcinoma cells. Carcinogenesis29, 1070–1076 (2008). ArticleCASPubMed Google Scholar