Cancer stem cell definitions and terminology: the devil is in the details (original) (raw)
Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature414, 105–111 (2001). ArticleCASPubMed Google Scholar
Clarke, M. F. et al. Cancer stem cells-perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res.66, 9339–9344 (2006). ArticleCASPubMed Google Scholar
Nguyen, L. V., Vanner, R., Dirks, P. & Eaves, C. J. Cancer stem cells: an evolving concept. Nature Rev. Cancer12, 133–143 (2012). CASPubMed Google Scholar
Schulenburg, A. et al. Neoplastic stem cells: current concepts and clinical perspectives. Crit. Rev. Oncol. Hematol.76, 2512–2520 (2010). Google Scholar
Nowell, P. C. The clonal evolution of tumor cell populations. Science194, 23–81 (1976). CASPubMed Google Scholar
Baylin, S. B. & Jones, P. A. A decade of exploring the cancer epigenome - biological and translational implications. Nature Rev. Cancer11, 726–734 (2011). CAS Google Scholar
Stratton, M. R. Exploring the genomes of cancer cells: progress and promise. Science331, 1553–1558 (2011). CASPubMed Google Scholar
Magee, J. A., Piskounova, E. & Morrison, S. J. Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell21, 283–296 (2012). CASPubMedPubMed Central Google Scholar
Singh, A. & Settleman, J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene29, 4741–4751 (2010). CASPubMedPubMed Central Google Scholar
Konopleva, M. Y. & Jordan, C. T. Leukemia stem cells and microenvironment: biology and therapeutic targeting. J. Clin. Oncol.29, 591–599 (2011). PubMedPubMed Central Google Scholar
Visvader, J. E. & Lindeman, G. J. Cancer stem cells: current status and evolving complexities. Cell Stem Cell10, 717–728 (2012). CASPubMed Google Scholar
Gillies, R. J., Verduzco, D. & Gatenby, R. A. Evolutionary dynamics of carcinogenesis and why targeted therapy does not work. Nature Rev. Cancer12, 487–493 (2012). CAS Google Scholar
Singh, S. K. et al. Identification of human brain tumour initiating cells. Nature432, 396–401 (2004). CASPubMed Google Scholar
Ponti, D. et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res.65, 5506–5511 (2005). CASPubMed Google Scholar
Ricci-Vitiani, L. et al. Identification and expansion of human colon-cancer-initiating cells. Nature445, 111–115 (2007). CASPubMed Google Scholar
Eramo, A. et al. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ.15, 504–514 (2008). CASPubMed Google Scholar
Han, M. E. et al. Cancer spheres from gastric cancer patients provide an ideal model system for cancer stem cell research. Cell. Mol. Life Sci.68, 3589–3605 (2011). CASPubMed Google Scholar
Copley, M. R. Beer, P. A. & Eaves, C. J. Hematopoietic stem cell heterogeneity takes center stage. Cell Stem Cell10, 690–697 (2012). CASPubMed Google Scholar
Bixby, S., Kruger, G. M., Mosher, J. T., Joseph, N. M. & Morrison, S. J. Cell-intrinsic differences between stem cells from different regions of the peripheral nervous system regulate the generation of neural diversity. Neuron35, 643–656 (2002). CASPubMed Google Scholar
Van Keymeulen, A. & Blanpain, C. Tracing epithelial stem cells during development, homeostasis, and repair. J. Cell Biol.197, 575–584 (2012). CASPubMedPubMed Central Google Scholar
Graf, T. & Enver, T. Forcing cells to change lineages. Nature462, 587–594 (2009). CASPubMed Google Scholar
Doulatov, S., Notta, F., Laurenti, E. & Dick, J. E. Hematopoiesis: a human perspective. Cell Stem Cell10, 120–136 (2012). CASPubMed Google Scholar
Smalley, M. J. et al. Isolation of mouse mammary epithelial subpopulations: a comparison of leading methods. J. Mammary Gland Biol. Neoplasia17, 91–97 (2012). PubMed Google Scholar
Wagers, A. J. & Conboy, I. M. Cellular and molecular signatures of muscle regeneration: current concepts and controversies in adult myogenesis. Cell122, 659–667 (2005). CASPubMed Google Scholar
Stephens, P. J. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell144, 27–40 (2011). CASPubMedPubMed Central Google Scholar
Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med.366, 883–892 (2012). CASPubMedPubMed Central Google Scholar
Sutherland, H. J., Lansdorp, P. M., Henkelman, D. H., Eaves, A. C. & Eaves, C. J. Functional characterization of individual human hematopoietic stem cells cultured at limiting dilution on supportive marrow stromal layers. Proc. Natl Acad. Sci. USA87, 3584–3358 (1990). CASPubMedPubMed Central Google Scholar
Uchida, N. et al. Direct isolation of human central nervous system stem cells. Proc. Natl Acad. Sci. USA97, 14270–14275 (2000). Google Scholar
Dontu, G. et al. In vitro propagation and transcriptional profiling of human mammary/stem progenitor cells. Genes Dev.17, 1253–1270 (2003). CASPubMedPubMed Central Google Scholar
Kamel-Reid, S. et al. A model of human acute lymphoblastic leukemia in immune-deficient SCID mice. Science246, 1597–1600 (1989). CASPubMed Google Scholar
Lapidot, T. et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature367, 645–648 (1994). CASPubMed Google Scholar
Sirard, C. et al. Normal and leukemic SCID-repopulating cells (SRC) coexist in the bone marrow and peripheral blood from CML patients in chronic phase, whereas leukemic SRC are detected in blast crisis. Blood87, 1539–1548 (1996). CASPubMed Google Scholar
Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA100, 3983–3988 (2003). CASPubMedPubMed Central Google Scholar
O'Brien, C. A., Pollett, A., Gallinger, S. & Dick, J. E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature445, 106–110 (2007). CASPubMed Google Scholar
Stewart, J. M. et al. Phenotypic heterogeneity and instability of human ovarian tumor-initiating cells. Proc. Natl Acad. Sci. USA108, 6468–6473 (2011). CASPubMedPubMed Central Google Scholar
Prince, M. E. et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc. Natl Acad. Sci. USA104, 973–978 (2007). CASPubMedPubMed Central Google Scholar
Taussig, D. C. et al. Anti-CD38 antibody-mediated clearance of human repopulating cells masks the heterogeneity of leukemia-initiating cells. Blood112, 568–575 (2008). CASPubMed Google Scholar
Taussig, D. C. et al. Leukemia-initiating cells from some acute myeloid leukemia patients with mutated nucleophosmin reside in the CD34- fraction. Blood115, 1976–1984 (2010). CASPubMedPubMed Central Google Scholar
Goardon, N. et al. Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer Cell19, 138–152 (2011). CASPubMed Google Scholar
Weinberg, O. K. & Arber, D. A. Mixed-phenotype acute leukemia: historical overview and a new definition. Leukemia24, 1844–1851 (2010). CASPubMed Google Scholar
Kong, Y. et al. CD34+CD38+CD19+ as well as CD34+CD38-CD19+ cells are leukemia-initiating cells with self-renewal capacity in human B-precursor ALL. Leukemia22, 1207–1213 (2008). CASPubMed Google Scholar
Dirks, P. B. Brain tumor stem cells: the cancer stem cell hypothesis writ large. Mol. Oncol.4, 420–430 (2010). PubMedPubMed Central Google Scholar
Shmelkov, S. V. et al. CD133 expression is not restricted to stem cells, and both CD133+ and CD133- metastatic colon cancer cells initiate tumours. J. Clin. Invest.118, 2111–2120 (2008). CASPubMedPubMed Central Google Scholar
Quintana, E. et al. Phenotypic heterogeneity among tumourigenic melanoma cells from patients that is reversible and not hierarchically organized. Cancer Cell18, 510–523 (2010). CASPubMedPubMed Central Google Scholar
Gupta, P. B., Chaffer, C. L. & Weinberg, R. A. Cancer stem cells: mirage or reality? Nature Med.15, 1010–1012 (2009). CASPubMed Google Scholar
Gupta, P. B. et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell146, 633–644 (2011). CASPubMed Google Scholar
Roesch, A. et al. A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumour growth. Cell141, 583–594 (2010). CASPubMedPubMed Central Google Scholar
Chaffer, C. L. et al. Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc. Natl Acad. Sci. USA108, 7950–7955 (2011). CASPubMedPubMed Central Google Scholar
Baylin, S. B. & Jones, P. A. A decade of exploring the cancer epigenome – biological and translational implications. Nature Rev. Cancer11, 726–734 (2011). CAS Google Scholar
Okita, K. & Yamanaka, S. Induced pluripotent stem cells: opportunities and challenges. Philosoph. Trans. R. Soc. B. Biol. Sci.366, 2198–2207 (2011). CAS Google Scholar
Akkina, R. et al. Humanized Rag1−/− γc−/− mice support multilineage hematopoiesis and are susceptible to HIV-1 infection via systemic and vaginal routes. PLoS ONE6, e20169 (2011). CASPubMedPubMed Central Google Scholar
Strowig, T. et al. Transgenic expression of human signal regulatory protein α in Rag2−/−γc−/− mice improves engraftment of human hematopoietic cells in humanized mice. Proc. Natl Acad. Sci. USA108, 13218–13223 (2011). CASPubMedPubMed Central Google Scholar
Wunderlich, M. et al. AML xenograft efficiency is significantly improved in NOD/SCID-IL2RG mice constitutively expressing human SCF, GM-CSF and IL-3. Leukemia24, 1785–1788 (2010). CASPubMedPubMed Central Google Scholar
Takagi, S. et al. Membrane-bound human SCF/KL promotes in vivo human hematopoietic engraftment and myeloid differentiation. Blood119, 2768–2777 (2012). CASPubMedPubMed Central Google Scholar
Lan, P., Tonomura, N., Shimizu, A., Wang, S. & Yang, Y. G. Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+ cell transplantation. Blood108, 487–492 (2006). CASPubMed Google Scholar
Petzer, A. L. et al. Characterization of primitive subpopulations of normal and leukemic cells present in the blood of patients with newly diagnosed as well as established chronic myeloid leukemia. Blood88, 2162–2171 (1996). CASPubMed Google Scholar
Blair, A., Hogge, D. E., Ailles, L. E., Lansdorp, P. M. & Sutherland, H. J. Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood89, 3104–3112 (1997). CASPubMed Google Scholar
Garnett, M. J. et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature483, 570–575 (2012). CASPubMedPubMed Central Google Scholar
Chen, J. et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature488, 522–526 (2012). CASPubMedPubMed Central Google Scholar
Schepers, A. G. et al. Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science337, 730–735 (2012). CASPubMed Google Scholar
Driessens, G., Beck, B., Caauwe, A., Simons, B. D. & Blanpain, C. Defining the mode of tumour growth by clonal analysis. Nature488, 527–530 (2012). CASPubMedPubMed Central Google Scholar
Domanska, U. M. et al. A review on CXCR4/CXCL12 axis in oncology: no place to hide. Eur. J. Cancer 8 Jun 2012 [epub ahead of print].
Damon, L. E. & Damon, L. E. Mobilization of hematopoietic stem cells into the peripheral blood. Exp. Rev. Hematol.2, 717–733 (2009). CAS Google Scholar
Kessans, M. R., Gatesman, M. L. & Kockler, D. R. Plerixafor: a peripheral blood stem cell mobilizer. Pharmacotherapy30, 485–492 (2010). CASPubMed Google Scholar
Burger, J. A. & Peled, A. CXCR4 antagonists: targeting the microenvironment in leukemia and other cancers. Leukemia23, 43–52 (2009). CASPubMed Google Scholar
Jin, L., Hope, K. J., Zhai, Q., Smadja-Joffe, F. & Dick, J. E. Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nature Med.12, 1167–1174 (2006). PubMed Google Scholar
Florian, S. et al. Detection of molecular targets on the surface of CD34+/CD38- stem cells in various myeloid malignancies. Leuk. Lymphoma47, 207–222 (2006). CASPubMed Google Scholar
Hosen, N. et al. CD96 is a leukemic stem cell-specific marker in human acute myeloid leukemia. Proc. Natl Acad. Sci. USA104, 11008–11013 (2007). CASPubMedPubMed Central Google Scholar
Van Rhenen, A. et al. The novel AML stem cell associated antigen CLL-1 aids in discrimination between normal and leukemic stem cells. Blood110, 2659–2666 (2007). CASPubMed Google Scholar
Jin, L. et al. Monoclonal antibody-mediated targeting of CD123, IL-3 receptor α chain, eliminates human acute myeloid leukemic stem cells. Cell Stem Cell5, 31–42 (2009). CASPubMed Google Scholar
Järås, M. et al. Isolation and killing of candidate chronic myeloid leukemia stem cells by antibody targeting of IL-1 receptor accessory protein. Proc. Natl Acad. Sci. USA107, 16280–16285 (2010). PubMedPubMed Central Google Scholar
Kemper, K., Grandela, C. & Medema, J. P. Molecular identification and targeting of colorectal cancer stem cells. Oncotarget1, 387–395 (2010). PubMedPubMed Central Google Scholar
Lorico, A. & Rappa, G. Phenotypic heterogeneity of breast cancer stem cells. J. Oncol.2011, 135039 (2011). PubMedPubMed Central Google Scholar
Korkaya, H. & Wicha, M. S. Selective targeting of cancer stem cells: a new concept in cancer therapeutics. BioDrugs21, 299–310 (2007). CASPubMed Google Scholar
Valent, P. Emerging stem cell concepts for imatinib-resistant chronic myeloid leukaemia: implications for the biology, management, and therapy of the disease. Br. J. Haematol.142, 361–378 (2008). CASPubMed Google Scholar
Tu, L. C., Foltz, G., Lin, E., Hood, L. & Tian, Q. Targeting stem cells-clinical implications for cancer therapy. Curr. Stem Cell Res. Ther.4, 147–153 (2009). CASPubMedPubMed Central Google Scholar
Gupta, P. B. et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell138, 645–659 (2009). CASPubMedPubMed Central Google Scholar
Curtin, J. C. & Lorenzi, M. V. Drug discovery approaches to target Wnt signaling in cancer stem cells. Oncotarget1, 563–577 (2010). PubMedPubMed Central Google Scholar
Martelli, A. M. et al. Targeting the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling network in cancer stem cells. Curr. Med. Chem.18, 2715–2726 (2011). CASPubMed Google Scholar
Allan, E. K., Holyoake, T. L., Craig, A. R. & Jørgensen, H. G. Omacetaxine may have a role in chronic myeloid leukaemia eradication through downregulation of Mcl-1 and induction of apoptosis in stem/progenitor cells. Leukemia25, 985–994 (2011). CASPubMed Google Scholar
Takebe, N., Harris, P. J., Warren, R. Q. & Ivy, S. P. Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nature Rev. Clin. Oncol.8, 97–106 (2011). CAS Google Scholar
de Sousa, E. M., Vermeulen, L., Richel, D. & Medema, J. P. Targeting Wnt signaling in colon cancer stem cells. Clin. Cancer Res.17, 647–653 (2011). PubMed Google Scholar
Wei, L. et al. Hsp27 participates in the maintenance of breast cancer stem cells through regulation of epithelial-mesenchymal transition and nuclear factor-κB. Breast Cancer Res.13, R101 (2011). CAS Google Scholar
Zuber, J. et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukemia. Nature478, 524–528 (2011). CASPubMedPubMed Central Google Scholar
Dawson, M. A. et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukemia. Nature478, 529–533 (2011). CASPubMedPubMed Central Google Scholar
Skrtic, M. et al. Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia. Cancer Cell20, 674–688 (2011). CASPubMedPubMed Central Google Scholar
Sachlos, E. et al. Identification of drugs including a dopamine receptor antagonist that selectively target cancer stem cells. Cell149, 1284–1297 (2012). CASPubMed Google Scholar
Valent, P. Targeting of leukemia-initiating cells to develop curative drug therapies: straightforward but nontrivial concept. Curr. Cancer Drug Targets11, 56–71 (2011). CASPubMed Google Scholar
Barnes, D. J. & Melo, J. V. Primitive, quiescent and difficult to kill: the role of non-proliferating stem cells in chronic myeloid leukemia. Cell Cycle5, 2862–2866 (2006). CASPubMed Google Scholar
Irish, J. M., Kotecha, N. & Nolan, G. P. Mapping normal and cancer cell signalling networks: towards single-cell proteomics. Nature Rev. Cancer6, 146–155 (2006). CAS Google Scholar
Ho, M. M., Hogge, D. E. & Ling, V. MDR1 and BCRP1 expression in leukemic progenitors correlates with chemotherapy response in acute myeloid Leukemia. Exp. Hematol.36, 433–442 (2008). CASPubMed Google Scholar
Rosen, D. B. et al. Distinct patterns of DNA damage response and apoptosis correlate with Jak/Stat and PI3 kinase response profiles in human myelogenous Leukemia. PLoS ONE5, e12405 (2010). PubMedPubMed Central Google Scholar
de Jonge, H. J. et al. Gene expression profiling in the leukemic stem cell-enriched CD34+ fraction identifies target genes that predict prognosis in normal karyotype AML. Leukemia25, 1825–1833 (2011). CASPubMed Google Scholar
Eppert, K. et al. Stem cell gene expression programs influence clinical outcome in human leukemia. Nature Med.17, 1086–1093 (2011). CASPubMed Google Scholar
Melo, J. V. & Ross, D. M. Minimal residual disease and discontinuation of therapy in chronic myeloid leukemia: can we aim at a cure? Hematol. Am. Soc. Hematol. Educ. Program2011, 136–142 (2011). Google Scholar
Liu, Y., Hernandez, A. M., Shibata, D. & Cortopassi, G. A. BCL2 translocation frequency rises with age in humans. Proc. Natl Acad. Sci. USA91, 8910–8914 (1994). CASPubMedPubMed Central Google Scholar
Limpens, J. et al. Lymphoma-associated translocation t(14;18) in blood B cells of normal individuals. Blood85, 2528–2536 (1995). CASPubMed Google Scholar
Biernaux, C., Loos, M., Sels, A., Huez, G. & Stryckmans, P. Detection of major bcr-abl gene expression at a very low level in blood cells of some healthy individuals. Blood86, 3118–3122 (1995). CASPubMed Google Scholar
Cazzaniga, G. et al. Developmental origins and impact of BCR-ABL1 fusion and IKZF1 deletions in monozygotic twins with Ph+ acute lymphoblastic leukemia. Blood118, 5559–5564 (2011). CASPubMedPubMed Central Google Scholar
Leary, R. J. et al. Development of personalized tumor biomarkers using massively parallel sequencing. Sci. Transl. Med.2, 20ra14 (2010). PubMedPubMed Central Google Scholar