Valent, P. et al. Cancer stem cell definitions and terminology: the devil is in the details. Nat. Rev. Cancer12, 767–775 (2012). CASPubMed Google Scholar
Greaves, M. F., Maia, A. T., Wiemels, J. L. & Ford, A. M. Leukemia in twins: lessons in natural history. Blood102, 2321–2333 (2003). CASPubMed Google Scholar
Eaton, K. W., Tooke, L. S., Wainwright, L. M., Judkins, A. R. & Biegel, J. A. Spectrum of SMARCB1/INI1 mutations in familial and sporadic rhabdoid tumors. Pediatr. Blood Cancer56, 7–15 (2011). PubMedPubMed Central Google Scholar
Nuchtern, J. G. et al. A prospective study of expectant observation as primary therapy for neuroblastoma in young infants: a Children's Oncology Group study. Ann. Surg.256, 573–580 (2012). PubMed Google Scholar
Beckwith, J. B. Precursor lesions of Wilms tumor: clinical and biological implications. Med. Pediatr. Oncol.21, 158–168 (1993). CASPubMed Google Scholar
Cohnheim, J. Congenitales, quergestreiftes Muskelsarkom der Nieren. Virchows Archiv65, 64–69 (in German) (1875). Google Scholar
Durante, F. Nesso fisio-patologico tra la struttura dei nei materni e la genesi di alcuni tumori maligni. Arch. Memo. Observ. Chir Prat11, 217–226 (in Italian) (1874). Google Scholar
Virchow, R. Die multiloculäre, ulcerirende Echinokokkengeschwulst der Leber. Verhandlungen der Physicalisch-Medicinischen Gesellschaft, 6, 84–95 (in German) (1855). Google Scholar
Gruhn, B. et al. Prenatal origin of childhood acute lymphoblastic leukemia, association with birth weight and hyperdiploidy. Leukemia22, 1692–1697 (2008). CASPubMed Google Scholar
Pine, S. R. et al. Incidence and clinical implications of GATA1 mutations in newborns with Down syndrome. Blood110, 2128–2131 (2007). CASPubMed Google Scholar
Brodeur, G. M. Neuroblastoma: biological insights into a clinical enigma. Nat. Rev. Cancer3, 203–216 (2003). CASPubMed Google Scholar
Maris, J. M. Recent advances in neuroblastoma. New Engl. J. Med.362, 2202–2211 (2010). CASPubMed Google Scholar
Huber, K. The sympathoadrenal cell lineage: specification, diversification, and new perspectives. Dev. Biol.298, 335–343 (2006). CASPubMed Google Scholar
Zimmerman, K. A. et al. Differential expression of myc family genes during murine development. Nature319, 780–783 (1986). CASPubMed Google Scholar
Hansford, L. M. et al. Mechanisms of embryonal tumor initiation: distinct roles for MycN expression and MYCN amplification. Proc. Natl Acad. Sci. USA101, 12664–12669 (2004). CASPubMedPubMed Central Google Scholar
Wartiovaara, K., Barnabe-Heider, F., Miller, F. D. & Kaplan, D. R. N-myc promotes survival and induces S-phase entry of postmitotic sympathetic neurons. J. Neurosci.22, 815–824 (2002). CASPubMedPubMed Central Google Scholar
Yuan, J. & Yankner, B. A. Apoptosis in the nervous system. Nature407, 802–809 (2000). CASPubMed Google Scholar
Zhu, S. et al. Activated ALK collaborates with MYCN in neuroblastoma pathogenesis. Cancer Cell21, 362–373 (2012). CASPubMedPubMed Central Google Scholar
Calao, M. et al. Direct effects of Bmi1 on p53 protein stability inactivates oncoprotein stress responses in embryonal cancer precursor cells at tumor initiation. Oncogene32, 3616–3626 (2013). CASPubMed Google Scholar
Weiss, W. A., Aldape, K., Mohapatra, G., Feuerstein, B. G. & Bishop, J. M. Targeted expression of MYCN causes neuroblastoma in transgenic mice. EMBO J.16, 2985–2995 (1997). CASPubMedPubMed Central Google Scholar
Marshall, G. M. et al. SIRT1 promotes N-Myc oncogenesis through a positive feedback loop involving the effects of MKP3 and ERK on N-Myc protein stability. PLoS Genet.7, e1002135 (2011). CASPubMedPubMed Central Google Scholar
Liu, P. Y. et al. The histone deacetylase SIRT2 stabilizes Myc oncoproteins. Cell Death Differ.20, 503–514 (2013). CASPubMed Google Scholar
Murphy, D. J. et al. Distinct thresholds govern Myc's biological output in vivo. Cancer Cell14, 447–457 (2008). CASPubMed Google Scholar
Berry, T. et al. The ALKF1174L mutation potentiates the oncogenic activity of MYCN in neuroblastoma. Cancer Cell22, 117–130 (2012). CASPubMedPubMed Central Google Scholar
Reissmann, E. et al. Involvement of bone morphogenetic protein-4 and bone morphogenetic protein-7 in the differentiation of the adrenergic phenotype in developing sympathetic neurons. Development122, 2079–2088 (1996). CASPubMed Google Scholar
Schneider, C., Wicht, H., Enderich, J., Wegner, M. & Rohrer, H. Bone morphogenetic proteins are required in vivo for the generation of sympathetic neurons. Neuron24, 861–870 (1999). CASPubMed Google Scholar
Trochet, D. et al. Germline mutations of the paired-like homeobox 2B (PHOX2B) gene in neuroblastoma. Am. J. Hum. Genet.74, 761–764 (2004). CASPubMedPubMed Central Google Scholar
Bourdeaut, F. et al. Germline mutations of the paired-like homeobox 2B (PHOX2B) gene in neuroblastoma. Cancer Lett.228, 51–58 (2005). CASPubMed Google Scholar
Reiff, T. et al. Neuroblastoma phox2b variants stimulate proliferation and dedifferentiation of immature sympathetic neurons. J. Neurosci.30, 905–915 (2010). CASPubMedPubMed Central Google Scholar
Alam, G. et al. MYCN promotes the expansion of Phox2B-positive neuronal progenitors to drive neuroblastoma development. Am. J. Pathol.175, 856–866 (2009). CASPubMedPubMed Central Google Scholar
Rybak, A. et al. A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nature Cell Biol.10, 987–993 (2008). CASPubMed Google Scholar
Molenaar, J. J. et al. LIN28B induces neuroblastoma and enhances MYCN levels via let-7 suppression. Nature Genet.44, 1199–1206 (2012). CASPubMed Google Scholar
Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science318, 1917–1920 (2007). CASPubMed Google Scholar
Balzer, E., Heine, C., Jiang, Q., Lee, V. M. & Moss, E. G. LIN28 alters cell fate succession and acts independently of the let-7 microRNA during neurogliogenesis in vitro. Development137, 891–900 (2010). CASPubMed Google Scholar
Murray, M. J. et al. LIN28 Expression in malignant germ cell tumors downregulates let-7 and increases oncogene levels. Cancer Res.73, 4872–4884 (2013). CASPubMedPubMed Central Google Scholar
Reiff, T. et al. Midkine and Alk signaling in sympathetic neuron proliferation and neuroblastoma predisposition. Development138, 4699–4708 (2011). CASPubMed Google Scholar
Cheng, L. Y. et al. Anaplastic lymphoma kinase spares organ growth during nutrient restriction in Drosophila. Cell146, 435–447 (2011). CASPubMed Google Scholar
Mosse, Y. P. et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature455, 930–935 (2008). CASPubMedPubMed Central Google Scholar
Janoueix-Lerosey, I. et al. Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature455, 967–970 (2008). CASPubMed Google Scholar
Chen, Y. Y. et al. Oncogenic mutations of ALK kinase in neuroblastoma. Nature455, 971–974 (2008). CASPubMed Google Scholar
De Brouwer, S. et al. Meta-analysis of neuroblastomas reveals a skewed ALK mutation spectrum in tumors with MYCN amplification. Clin. Cancer Res.16, 4353–4362 (2010). CASPubMed Google Scholar
Heukamp, L. C. et al. Targeted expression of mutated ALK induces neuroblastoma in transgenic mice. Sci. Transl. Med.4, ra91 (2012). Google Scholar
Schulte, J. H. et al. MYCN and ALKF1174L are sufficient to drive neuroblastoma development from neural crest progenitor cells. Oncogene21, 1059–1065 (2012). Google Scholar
De Preter, K. et al. Human fetal neuroblast and neuroblastoma transcriptome analysis confirms neuroblast origin and highlights neuroblastoma candidate genes. Genome Biol.7, 17 (2006). Google Scholar
Beckwith, J. B. & Perrin, E. V. In situ neuroblastomas: a contribution to the natural history of neural crest tumors. Am. J. Pathol.43, 1089–1104 (1963). CASPubMedPubMed Central Google Scholar
Woods, W. G. et al. A population-based study of the usefulness of screening for neuroblastoma. Lancet348, 1682–1687 (1996). CASPubMed Google Scholar
Murtaza, M. et al. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature497, 108–112 (2013). CASPubMed Google Scholar
Roy, A., Roberts, I., Norton, A. & Vyas, P. Acute megakaryoblastic leukaemia (AMKL) and transient myeloproliferative disorder (TMD) in Down syndrome: a multi-step model of myeloid leukaemogenesis. Br. J. Haematol.147, 3–12 (2009). CASPubMed Google Scholar
Brodeur, G. M., Dahl, G. V., Williams, D. L., Tipton, R. E. & Kalwinsky, D. K. Transient leukemoid reaction and trisomy 21 mosaicism in a phenotypically normal newborn. Blood55, 691–693 (1980). CASPubMed Google Scholar
Hasle, H. et al. A pediatric approach to the WHO classification of myelodysplastic and myeloproliferative diseases. Leukemia17, 277–282 (2003). CASPubMed Google Scholar
Massey, G. V. et al. A prospective study of the natural history of transient leukemia (TL) in neonates with Down syndrome (DS): Children's Oncology Group (COG) study POG-9481. Blood107, 4606–4613 (2006). CASPubMed Google Scholar
Klusmann, J. H. et al. Treatment and prognostic impact of transient leukemia in neonates with Down syndrome. Blood111, 2991–2998 (2008). CASPubMedPubMed Central Google Scholar
Tunstall-Pedoe, O. et al. Abnormalities in the myeloid progenitor compartment in Down syndrome fetal liver precede acquisition of GATA1 mutations. Blood112, 4507–4511 (2008). CASPubMed Google Scholar
Polski, J. M. et al. Acute megakaryoblastic leukemia after transient myeloproliferative disorder with clonal karyotype evolution in a phenotypically normal neonate. J. Pediatr. Hematol. Oncol.24, 50–54 (2002). PubMed Google Scholar
Maclean, G. A. et al. Altered hematopoiesis in trisomy 21 as revealed through in vitro differentiation of isogenic human pluripotent cells. Proc. Natl Acad. Sci. USA109, 17567–17572 (2012). CASPubMedPubMed Central Google Scholar
Chou, S. T. et al. Trisomy 21-associated defects in human primitive hematopoiesis revealed through induced pluripotent stem cells. Proc. Natl Acad. Sci. USA109, 17573–17578 (2012). CASPubMedPubMed Central Google Scholar
Kirsammer, G. et al. Highly penetrant myeloproliferative disease in the Ts65Dn mouse model of Down syndrome. Blood111, 767–775 (2008). CASPubMedPubMed Central Google Scholar
Dore, L. C. & Crispino, J. D. Transcription factor networks in erythroid cell and megakaryocyte development. Blood118, 231–239 (2011). CASPubMedPubMed Central Google Scholar
Bourquin, J. P. et al. Identification of distinct molecular phenotypes in acute megakaryoblastic leukemia by gene expression profiling. Proc. Natl Acad. Sci. USA103, 3339–3344 (2006). CASPubMedPubMed Central Google Scholar
Stankiewicz, M. J. & Crispino, J. D. ETS2 and ERG promote megakaryopoiesis and synergize with alterations in GATA-1 to immortalize hematopoietic progenitor cells. Blood113, 3337–3347 (2009). CASPubMedPubMed Central Google Scholar
Salek-Ardakani, S. et al. ERG is a megakaryocytic oncogene. Cancer Res.69, 4665–4673 (2009). CASPubMed Google Scholar
Birger, Y. et al. Perturbation of fetal hematopoiesis in a mouse model of Down syndrome's transient myeloproliferative disorder. Blood122, 988–998 (2013). CASPubMedPubMed Central Google Scholar
Elagib, K. E. et al. RUNX1 and GATA-1 coexpression and cooperation in megakaryocytic differentiation. Blood101, 4333–4341 (2003). CASPubMed Google Scholar
Gurbuxani, S., Vyas, P. & Crispino, J. D. Recent insights into the mechanisms of myeloid leukemogenesis in Down syndrome. Blood103, 399–406 (2004). CASPubMed Google Scholar
Taub, J. W. et al. Prenatal origin of GATA1 mutations may be an initiating step in the development of megakaryocytic leukemia in Down syndrome. Blood104, 1588–1589 (2004). CASPubMed Google Scholar
Li, Z. et al. Developmental stage-selective effect of somatically mutated leukemogenic transcription factor GATA1. Nature Genet.37, 613–619 (2005). CASPubMed Google Scholar
Hitzler, J. K., Cheung, J., Li, Y., Scherer, S. W. & Zipursky, A. GATA1 mutations in transient leukemia and acute megakaryoblastic leukemia of Down syndrome. Blood101, 4301–4304 (2003). CASPubMed Google Scholar
Rainis, L. et al. Mutations in exon 2 of GATA1 are early events in megakaryocytic malignancies associated with trisomy 21. Blood102, 981–986 (2003). CASPubMed Google Scholar
Alford, K. A. et al. Analysis of GATA1 mutations in Down syndrome transient myeloproliferative disorder and myeloid leukemia. Blood118, 2222–2238 (2011). CASPubMed Google Scholar
Kanezaki, R. et al. Down syndrome and GATA1 mutations in transient abnormal myeloproliferative disorder: mutation classes correlate with progression to myeloid leukemia. Blood116, 4631–4638 (2010). CASPubMed Google Scholar
Zipursky, A. Transient leukaemia—a benign form of leukaemia in newborn infants with trisomy 21. Br. J. Haematol.120, 930–938 (2003). PubMed Google Scholar
Muramatsu, H. et al. Risk factors for early death in neonates with Down syndrome and transient leukaemia. Br. J. Haematol.142, 610–615 (2008). PubMed Google Scholar
Roy, A. et al. Perturbation of fetal liver hematopoietic stem and progenitor cell development by trisomy 21. Proc. Natl Acad. Sci. USA109, 17579–17584 (2012). CASPubMedPubMed Central Google Scholar
Woo, A. J. et al. Developmental differences in IFN signaling affect GATA1s-induced megakaryocyte hyperproliferation. J. Clin. Invest.123, 3292–3304 (2013). CASPubMed Central Google Scholar
Nikolaev, S. I. et al. Exome sequencing identifies putative drivers of progression of transient myeloproliferative disorder to AMKL in infants with Down syndrome. Blood122, 554–561 (2013). CASPubMed Google Scholar
Saida, S. et al. Clonal selection in xenografted TAM recapitulates the evolutionary process of myeloid leukemia in Down syndrome. Blood121, 4377–4387 (2013). CASPubMed Google Scholar
Roberts, I. et al. GATA1-mutant clones are frequent and often unsuspected in babies with Down syndrome: identification of a population at risk of leukemia. Blood122, 3908–3917 (2013). CASPubMedPubMed Central Google Scholar
Ford, A. M. et al. In utero rearrangements in the trithorax-related oncogene in infant leukaemias. Nature363, 358–360 (1993). CASPubMed Google Scholar
Wiemels, J. L. et al. Prenatal origin of acute lymphoblastic leukaemia in children. Lancet354, 1499–1503 (1999). CASPubMed Google Scholar
Teuffel, O. et al. Prenatal origin of separate evolution of leukemia in identical twins. Leukemia18, 1624–1629 (2004). CASPubMed Google Scholar
Taub, J. W. et al. High frequency of leukemic clones in newborn screening blood samples of children with B-precursor acute lymphoblastic leukemia. Blood99, 2992–2996 (2002). CASPubMed Google Scholar
Eguchi-Ishimae, M. et al. Breakage and fusion of the TEL (ETV6) gene in immature B lymphocytes induced by apoptogenic signals. Blood97, 737–743 (2001). CASPubMed Google Scholar
McHale, C. M. et al. Prenatal origin of ETV6–RUNX1-positive acute lymphoblastic leukemia in children born in California. Genes Chromosomes Cancer37, 36–43 (2003). CASPubMed Google Scholar
Olsen, M. et al. Preleukemic TEL–AML1-positive clones at cell level of 10(−3) to 10(−4) do not persist into adulthood. J. Pediatr. Hematol.Oncol.28, 734–740 (2006). CASPubMed Google Scholar
Hong, D. et al. Initiating and cancer-propagating cells in TEL–AML1-associated childhood leukemia. Science319, 336–339 (2008). CASPubMed Google Scholar
Tuszuki, S. & Seto, M. TEL (ETV6)-AML1 (RUNX1) initiates self-renewing fetal pro-B cells in association with a transcriptional program shared with embryonic stem cells in mice. Stem Cells31, 236–247 (2013). Google Scholar
Torrano, V., Procter, J., Cardus, P., Greaves, M. & Ford, A. M. ETV6-RUNX1 promotes survival of early B lineage progenitor cells via a dysregulated erythropoietin receptor. Blood118, 4910–4918 (2011). CASPubMed Google Scholar
van der Weyden, L. et al. Modeling the evolution of ETV6-RUNX1-induced B-cell precursor acute lymphoblastic leukemia in mice. Blood118, 1041–1051 (2011). CASPubMed Google Scholar
Ford, A. M. et al. The TEL–AML1 leukemia fusion gene dysregulates the TGF-β pathway in early B lineage progenitor cells. J. Clin. Invest.119, 826–836 (2009). CASPubMedPubMed Central Google Scholar
Cazzaniga, G. et al. Developmental origins and impact of BCR-ABL1 fusion and IKZF1 deletions in monozygotic twins with Ph+ acute lymphoblastic leukemia. Blood118, 5559–5564 (2011). CASPubMedPubMed Central Google Scholar
Chuk, M. K., McIntyre, E., Small, D. & Brown, P. Discordance of MLL-rearranged (MLL-R) infant acute lymphoblastic leukemia in monozygotic twins with spontaneous clearance of preleukemic clone in unaffected twin. Blood113, 6691–6694 (2009). CASPubMedPubMed Central Google Scholar
Powell, B. C. et al. Identification of TP53 as an acute lymphocytic leukemia susceptibility gene through exome sequencing. Pediatr. Blood Cancer60, E1–E3 (2013). CASPubMed Google Scholar
Holmfeldt, L. et al. The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nature Genet.45, 242–252 (2013). CASPubMed Google Scholar
Ito, M. Control of mental activities by internal models in the cerebellum. Nature Rev. Neurosci.9, 304–313 (2008). CAS Google Scholar
Simeone, A., Acampora, D., Gulisano, M., Stornaiuolo, A. & Boncinelli, E. Nested expression domains of four homeobox genes in developing rostral brain. Nature358, 687–690 (1992). CASPubMed Google Scholar
Wingate, R. J. & Hatten, M. E. The role of the rhombic lip in avian cerebellum development. Development126, 4395–4404 (1999). CASPubMed Google Scholar
Adamson, D. C. et al. OTX2 is critical for the maintenance and progression of Shh-independent medulloblastomas. Cancer Res.70, 181–191 (2010). CASPubMed Google Scholar
Bai, R. Y., Staedtke, V., Lidov, H. G., Eberhart, C. G. & Riggins, G. J. OTX2 represses myogenic and neuronal differentiation in medulloblastoma cells. Cancer Res.72, 5988–6001 (2012). CASPubMedPubMed Central Google Scholar
Bunt, J. et al. OTX2 directly activates cell cycle genes and inhibits differentiation in medulloblastoma cells. Int. J. Cancer131, E21–E32 (2012). CASPubMed Google Scholar
Hatten, M. E. & Heintz, N. Mechanisms of neural patterning and specification in the developing cerebellum. Annu. Rev. Neurosci.18, 385–408 (1995). CASPubMed Google Scholar
Morales, D. & Hatten, M. E. Molecular markers of neuronal progenitors in the embryonic cerebellar anlage. J. Neurosci.26, 12226–12236 (2006). CASPubMedPubMed Central Google Scholar
Spassky, N. et al. Primary cilia are required for cerebellar development and Shh-dependent expansion of progenitor pool. Dev. Biol.317, 246–259 (2008). CASPubMedPubMed Central Google Scholar
Chang, C. H., Chang, F. M., Yu, C. H., Ko, H. C. & Chen, H. Y. Assessment of fetal cerebellar volume using three-dimensional ultrasound. Ultrasound Med. Biol.26, 981–988 (2000). CASPubMed Google Scholar
Volpe, J. J. Cerebellum of the premature infant: rapidly developing, vulnerable, clinically important. J. Child Neurol.24, 1085–1104 (2009). PubMedPubMed Central Google Scholar
Andersen, B. B., Korbo, L. & Pakkenberg, B. A quantitative study of the human cerebellum with unbiased stereological techniques. J. Comparative Neurol.326, 549–560 (1992). CAS Google Scholar
Dahmane, N. & Ruiz i Altaba, A. Sonic hedgehog regulates the growth and patterning of the cerebellum. Development126, 3089–3100 (1999). PubMed Google Scholar
Lee, A. et al. Isolation of neural stem cells from the postnatal cerebellum. Nature Neurosci.8, 723–729 (2005). CASPubMed Google Scholar
Wang, V. Y., Rose, M. F. & Zoghbi, H. Y. Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron48, 31–43 (2005). CASPubMed Google Scholar
Raaf, J. & Kernohan, J. W. A study of the external granular layer in the cerebellum. The disappearance of the external granular layer and the growth of the molecular and internal granular layers in the cerebellum. Am. J. Anat.75, 151–172 (1944). Google Scholar
Gailani, M. R. et al. Developmental defects in Gorlin syndrome related to a putative tumor suppressor gene on chromosome 9. Cell69, 111–117 (1992). CASPubMed Google Scholar
Hahn, H. et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell85, 841–851 (1996). CASPubMed Google Scholar
Northcott, P. A. et al. Medulloblastoma comprises four distinct molecular variants. J. Clin. Oncol.29, 1408–1414 (2011). PubMed Google Scholar
Goodrich, L. V., Milenkovic, L., Higgins, K. M. & Scott, M. P. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science277, 1109–1113 (1997). CASPubMed Google Scholar
Brugieres, L. et al. Incomplete penetrance of the predisposition to medulloblastoma associated with germ-line SUFU mutations. J. Med. Genet.47, 142–144 (2010). CASPubMed Google Scholar
Northcott, P. A. et al. Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature488, 49–56 (2012). CASPubMedPubMed Central Google Scholar
Thomas, W. D. et al. Patched1 deletion increases N-Myc protein stability as a mechanism of medulloblastoma initiation and progression. Oncogene28, 1605–1615 (2009). CASPubMed Google Scholar
Hallahan, A. R. et al. The SmoA1 mouse model reveals that Notch signaling is critical for the growth and survival of sonic hedgehog-induced medulloblastomas. Cancer Res.64, 7794–7800 (2004). CASPubMed Google Scholar
Mao, J. et al. A novel somatic mouse model to survey tumorigenic potential applied to the Hedgehog pathway. Cancer Res.66, 10171–10178 (2006). CASPubMedPubMed Central Google Scholar
Weiner, H. L. et al. Induction of medulloblastomas in mice by sonic hedgehog, independent of Gli1. Cancer Res.62, 6385–6389 (2002). CASPubMed Google Scholar
Schuller, U. et al. Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma. Cancer Cell14, 123–134 (2008). CASPubMedPubMed Central Google Scholar
Yang, Z. J. et al. Medulloblastoma can be initiated by deletion of Patched in lineage-restricted progenitors or stem cells. Cancer Cell14, 135–145 (2008). CASPubMedPubMed Central Google Scholar
Knoepfler, P. S., Cheng, P. F. & Eisenman, R. N. N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes Dev.16, 2699–2712 (2002). CASPubMedPubMed Central Google Scholar
Browd, S. R. et al. N-myc can substitute for insulin-like growth factor signaling in a mouse model of sonic hedgehog-induced medulloblastoma. Cancer Res.66, 2666–2672 (2006). CASPubMed Google Scholar
Korshunov, A. et al. Biological and clinical heterogeneity of _MYCN_-amplified medulloblastoma. Acta Neuropathol.123, 515–527 (2012). CASPubMed Google Scholar
Kawauchi, D. et al. A mouse model of the most aggressive subgroup of human medulloblastoma. Cancer Cell21, 168–180 (2012). CASPubMedPubMed Central Google Scholar
Kool, M. et al. Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol.123, 473–484 (2012). CASPubMedPubMed Central Google Scholar
Pei, Y. et al. WNT signaling increases proliferation and impairs differentiation of stem cells in the developing cerebellum. Development139, 1724–1733 (2012). CASPubMedPubMed Central Google Scholar
Kropilak, M., Jagelman, D. G., Fazio, V. W., Lavery, I. L. & McGannon, E. Brain tumors in familial adenomatous polyposis. Diseases Colon Rectum32, 778–782 (1989). CAS Google Scholar
Taylor, M. D. et al. Failure of a medulloblastoma-derived mutant of SUFU to suppress WNT signaling. Oncogene23, 4577–4583 (2004). CASPubMed Google Scholar
Barker, N. et al. The chromatin remodelling factor Brg-1 interacts with β-catenin to promote target gene activation. EMBO J.20, 4935–4943 (2001). CASPubMedPubMed Central Google Scholar
Pugh, T. J. et al. Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature488, 106–110 (2012). CASPubMedPubMed Central Google Scholar
Momota, H., Shih, A. H., Edgar, M. A. & Holland, E. C. c-Myc and β-catenin cooperate with loss of p53 to generate multiple members of the primitive neuroectodermal tumor family in mice. Oncogene27, 4392–4401 (2008). CASPubMed Google Scholar
Takebayashi, H. et al. Non-overlapping expression of Olig3 and Olig2 in the embryonic neural tube. Mech. Dev.113, 169–174 (2002). CASPubMed Google Scholar
Taylor, M. D. et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol.123, 465–472 (2012). CASPubMed Google Scholar
Swartling, F. J. et al. Distinct neural stem cell populations give rise to disparate brain tumors in response to N-MYC. Cancer Cell21, 601–613 (2012). CASPubMedPubMed Central Google Scholar
Stehelin, D., Varmus, H. E., Bishop, J. M. & Vogt, P. K. DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature260, 170–173 (1976). CASPubMed Google Scholar
Siddhartha, M. The Emperor of All Maladies: A Biography of Cancer (Scribner, 2010). Google Scholar
Knudson, A. G. Jr Mutation and cancer: statistical study of retinoblastoma. Proc. Natl Acad. Sci. USA68, 820–823 (1971). PubMedPubMed Central Google Scholar
Stephens, P. J. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell144, 27–40 (2011). CASPubMedPubMed Central Google Scholar
Forment, J. V., Kaidi, A. & Jackson, S. P. Chromothripsis and cancer: causes and consequences of chromosome shattering. Nat. Rev. Cancer12, 663–670 (2012). CASPubMed Google Scholar
Molenaar, J. J. et al. Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature483, 589–593 (2012). CASPubMed Google Scholar
Otto, T. et al. Stabilization of N-Myc is a critical function of Aurora A in human neuroblastoma. Cancer Cell15, 67–78 (2009). CASPubMed Google Scholar
Masciari, S. et al. F18-fluorodeoxyglucose-positron emission tomography/computed tomography screening in Li-Fraumeni syndrome. JAMA299, 1315–1319 (2008). CASPubMed Google Scholar
Custodio, G. et al. Impact of neonatal screening and surveillance for the TP53 R337H mutation on early detection of childhood adrenocortical tumors. J. Clin. Oncol.31, 2619–2626 (2013). PubMedPubMed Central Google Scholar
Yoshimoto, M. et al. Embryonic day 9 yolk sac and intra-embryonic hemogenic endothelium independently generate a B-1 and marginal zone progenitor lacking B-2 potential. Proc. Natl Acad. Sci. USA108, 1468–1473 (2011). CASPubMedPubMed Central Google Scholar
Montecino-Rodriguez, E. & Dorshkind, K. Formation of B-1 B cells from neonatal B-1 transitional cells exhibits NF-kB redundancy. J. Immunol.187, 5712–5719 (2011). CASPubMed Google Scholar
Adolfsson, J. et al. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell121, 295–306 (2005). CASPubMed Google Scholar
Li, Y. S., Wasserman, R., Hayakawa, K. & Hardy, R. R. Identification of the earliest B lineage stage in mouse bone marrow. Immunity5, 527–535 (1996). CASPubMed Google Scholar
Rumfelt, L. L., Zhou, Y., Rowley, B. M., Shinton, S. A. & Hardy, R. R. Lineage specification and plasticity in CD19− early B cell precursors. J. Exp. Med.203, 675–687 (2006). CASPubMedPubMed Central Google Scholar
Sitnicka, E. et al. Complementary signaling through flt3 and interleukin-7 receptor α is indispensable for fetal and adult B cell genesis. J. Exp. Med.198, 1495–1506 (2003). CASPubMedPubMed Central Google Scholar
Sitnicka, E. et al. Key role of flt3 ligand in regulation of the common lymphoid progenitor but not in maintenance of the hematopoietic stem cell pool. Immunity17, 463–472 (2002). CASPubMed Google Scholar
Nutt, S. L. & Kee, B. L. The transcriptional regulation of B cell lineage commitment. Immunity26, 715–725 (2007). CASPubMed Google Scholar
Kirstetter, P., Thomas, M., Dierich, A., Kastner, P. & Chan, S. Ikaros is critical for B cell differentiation and function. Eur. J. Immunol.32, 720–730 (2002). CASPubMed Google Scholar
Wang, J. H. et al. Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation. Immunity5, 537–549 (1996). CASPubMed Google Scholar
Yoshida, T., Ng, S. Y., Zuniga-Pflucker, J. C. & Georgopoulos, K. Early hematopoietic lineage restrictions directed by Ikaros. Nature Immunol.7, 382–391 (2006). CAS Google Scholar
Mullighan, C. G. et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature453, 110–114 (2008). CASPubMed Google Scholar
Cobaleda, C., Jochum, W. & Busslinger, M. Conversion of mature B cells into T cells by dedifferentiation to uncommitted progenitors. Nature449, 473–477 (2007). CASPubMed Google Scholar
Mullighan, C. G. et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature446, 758–764 (2007). CASPubMed Google Scholar
Shah, S. et al. A recurrent germline PAX5 mutation confers susceptibility to pre-B cell acute lymphoblastic leukemia. Nature Genet.45, 1226–1231 (2013). CASPubMed Google Scholar
Bain, G. et al. Both E12 and E47 allow commitment to the B cell lineage. Immunity6, 145–154 (1997). CASPubMed Google Scholar
Borghesi, L. et al. E47 is required for V(D)J recombinase activity in common lymphoid progenitors. J. Exp. Med.202, 1669–1677 (2005). CASPubMedPubMed Central Google Scholar
Welinder, E. et al. The transcription factors E2A and HEB act in concert to induce the expression of FOXO1 in the common lymphoid progenitor. Proc. Natl Acad. Sci. USA108, 17402–17407 (2011). CASPubMedPubMed Central Google Scholar
Kikuchi, K., Kasai, H., Watanabe, A., Lai, A. Y. & Kondo, M. IL-7 specifies B cell fate at the common lymphoid progenitor to pre-proB transition stage by maintaining early B cell factor expression. J. Immunol.181, 383–392 (2008). CASPubMed Google Scholar
Seo, W., Ikawa, T., Kawamoto, H. & Taniuchi, I. Runx1-Cbfβ facilitates early B lymphocyte development by regulating expression of Ebf1. J. Exp. Med.209, 1255–1262 (2012). CASPubMedPubMed Central Google Scholar
Growney, J. D. et al. Loss of Runx1 perturbs adult hematopoiesis and is associated with a myeloproliferative phenotype. Blood106, 494–504 (2005). CASPubMedPubMed Central Google Scholar
Tsubono, Y. & Hisamichi, S. A halt to neuroblastoma screening in Japan. New Engl. J. Med.350, 2010–2011 (2004). CASPubMed Google Scholar
Breslow, N., Olshan, A., Beckwith, J. B. & Green, D. M. Epidemiology of Wilms tumor. Med. Pediatr. Oncol.21, 172–181 (1993). CASPubMed Google Scholar
Coppes, M. J., Haber, D. A. & Grundy, P. E. Genetic events in the development of Wilms' tumor. N. Engl. J. Med.331, 586–590 (1994). CASPubMed Google Scholar
Park, S. et al. Inactivation of WT1 in nephrogenic rests, genetic precursors to Wilms' tumour. Nature Genet.5, 363–367 (1993). CASPubMed Google Scholar
Chen, D. et al. Cell-specific effects of RB or RB/p107 loss on retinal development implicate an intrinsically death-resistant cell-of-origin in retinoblastoma. Cancer Cell5, 539–551 (2004). CASPubMed Google Scholar
Zhang, J., Schweers, B. & Dyer, M. A. The first knockout mouse model of retinoblastoma. Cell Cycle3, 952–959 (2004). CASPubMed Google Scholar
Federico, S., Brennan, R. & Dyer, M. A. Childhood cancer and developmental biology a crucial partnership. Curr. Top. Dev. Biol.94, 1–13 (2011). CASPubMedPubMed Central Google Scholar
Abramson, D. H. et al. Rapid growth of retinoblastoma in a premature twin. Arch. Ophthalmol.120, 1232–1233 (2002). PubMed Google Scholar
Lohmann, D. R. & Gallie, B. L. Retinoblastoma: revisiting the model prototype of inherited cancer. Am. J. Med. Genet. C. Semin. Med. Genet.129C, 23–28 (2004). PubMed Google Scholar
Looijenga, L. H. & Oosterhuis, J. W. Pathogenesis of testicular germ cell tumours. Rev. Reprod.4, 90–100 (1999). CASPubMed Google Scholar
Bussey, K. J. et al. Chromosome abnormalities of eighty-one pediatric germ cell tumors: sex-, age-, site-, and histopathology-related differences—a Children's Cancer Group study. Genes Chromosomes Cancer25, 134–146 (1999). CASPubMed Google Scholar
Isaacs, H. Jr. Perinatal (fetal and neonatal) germ cell tumors. J. Pediatr. Surg.39, 1003–1013 (2004). PubMed Google Scholar
Schindler, J. W. et al. TEL–AML1 corrupts hematopoietic stem cells to persist in the bone marrow and initiate leukemia. Cell Stem Cell5, 43–53 (2009). CASPubMed Google Scholar
Klochendler-Yeivin, A. et al. The murine SNF5/INI1 chromatin remodeling factor is essential for embryonic development and tumor suppression. EMBO Rep.1, 500–506 (2000). CASPubMedPubMed Central Google Scholar
Versteege, I. et al. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature394, 203–206 (1998). CASPubMed Google Scholar
Biegel, J. A. et al. Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. Cancer Res.59, 74–79 (1999). CASPubMed Google Scholar
Sevenet, N. et al. Constitutional mutations of the hSNF5/INI1 gene predispose to a variety of cancers. Am. J. Hum. Genet.65, 1342–1348 (1999). CASPubMedPubMed Central Google Scholar